Temozolomide in the Treatment of Aggressive Pituitary Tumors—An Overview of Existing Knowledge and Future Perspectives

Ann McCormack, MBBS, FRACP, PhD
Staff Specialist Endocrinology, St Vincent’s Hospital and Garvan Institute of Medical Research, Sydney, Australia

Abstract
The management of aggressive pituitary tumors remains a challenge, however, the recent identification of temozolomide as a chemotherapeutic agent with significant efficacy against these tumors has heralded a new therapeutic era. There has been an exponential growth in the international experience with temozolomide over the past five years, now totaling 50 published cases. Overall, 67% of cases demonstrated a response to temozolomide. Prolactin- and adrenocorticotrophic hormone (ACTH)-secreting tumors respond more frequently than non-functioning tumors. Response is typically evident in the first three months of treatment. Adverse effects occur in almost half of patients, although the majority are mild. The expression of a DNA repair enzyme, 06-methylguanine-DNA methyltransferase (MGMT), as determined by immunohistochemistry, appears to be the primary determinant of response to temozolomide in pituitary tumors. There is suggestion that MGMT may also play a role in pituitary tumorigenesis. Over the next few years we will see temozolomide used earlier in the treatment algorithm of aggressive pituitary tumors, making it imperative to collect global long-term data on its use.

Keywords
Pituitary tumor, pituitary carcinoma, temozolomide, MGMT

Disclosure: The author has no conflicts of interest to declare.

Received: July 2, 2012 Accepted: August 21, 2012 Citation: US Endocrinology, 2012;8(2):112–7 DOI: 10.17925/USE.2012.08.02.112

Correspondence: Ann McCormack, MBBS, FRACP, PhD, Department of Endocrinology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia. E: a.mccormack@garvan.org.au

Pituitary tumors are common, with an estimated prevalence of 16.7% in the general population based on imaging and autopsy studies. Clinically significant pituitary tumors are more prevalent than previously recognized, with one case per 1,000–1,300 people. The majority of pituitary tumors are indolent, slow-growing neoplasms. However, 40–50% of pituitary tumors are locally invasive and commonly unable to be completely surgically excised.

An ‘aggressive pituitary tumor’ typically refers to an invasive pituitary tumor that demonstrates progressive growth despite multimodal therapy, including surgery, and radiotherapy. Whilst these tumors have malignant potential, the term pituitary carcinoma is strictly reserved for those tumors with demonstrated craniospinal or systemic metastases. As there is a lack of formal criterion used to define an aggressive pituitary tumor, epidemiologic data with respect to this group is lacking. The World Health Organization pathological classification of an ‘atypical pituitary adenoma’ (Ki67 >3%, excessive p53 immunoreactivity and increased mitotic activity) was coined in an attempt to identify a tumor with the potential for more aggressive behaviour. A recent study, conducted in a tertiary referral center, identified 15% of atypical adenomas amongst their surgical cohort. Pituitary carcinoma is rare, accounting for 0.2% of pituitary tumors.

The management of aggressive pituitary tumors is challenging, and there is substantial morbidity and mortality associated with both the tumor and treatment. Patients often undergo multiple surgeries and radiotherapy in an attempt to control tumor growth. These tumors are often also resistant to medical therapies, such as dopamine agonists. Historically, systemic chemotherapy was reserved as a ‘last resort’ therapy, principally due to the lack of identification of a consistently effective chemotherapeutic agent. However, over the past five years temozolomide, an oral alkylating agent commonly used in the management of glioblastoma, has emerged as the first chemotherapeutic with substantial efficacy in the treatment of aggressive pituitary tumors. International experience with temozolomide, as used in the management of an aggressive pituitary tumor, has grown exponentially, with 50 published cases now reported. This review will summarize and examine the existing knowledge base, but also speculate on the future possibilities regarding the use of temozolomide in pituitary tumors. The role of 06-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein, as a biomarker of response to temozolomide and its possible role in pituitary tumor biology will be discussed.

Temozolomide and DNA Repair Systems
Temozolomide is an oral second-generation alkylating agent of the imidotetrazine class. The lipophilic nature of the temozolomide molecule promotes efficient passage across the blood-brain barrier, advantageous when treating pituitary tumors. Conversion of temozolomide to a highly reactive methylidiazonium ion is responsible for the formation of methyl adducts with DNA purinic bases. Figure 1 illustrates the mechanism

Figure 1

The mechanism of temozolomide and DNA repair systems.
of temozolomide cytotoxicity. The critical methyl adduct produced by temozolomide is the lesion at O6-guanine (O6MeG). O6MeG adducts account for only 5% of alkylating lesions induced by temozolomide but deliver the greatest cytotoxicity. Other alkylating lesions induced by temozolomide are N3-methylguanine (N3MeG) and N7-methylguanine (N7MeG). In the presence of the base excision repair (BER) pathway, N3MeG and N7MeG lesions are repaired. MGMT is responsible for repairing O6MeG lesions. In the absence of MGMT, methylated guanine lesions incorrectly pair with thymine, triggering the mismatch repair (MMR) pathway. In the presence of MMR activation there is incorrect reinsertion of thymine opposite the O6MeG lesion resulting in futile cycles of repair and ultimately DNA strand breaks. This is followed by either activation of the apoptotic cascade or a senescence-like state.11,12

The standard temozolomide dosing regime is 200 mg/m² given daily for five days every 28 days.13 Common alternative regimes include ‘dose-dense’ protocols, such as 150 mg/m² days 1–7 and days 14–21 or a 28 day cycle, and ‘metronomic’ protocols using continuous daily low-dose (50–75 mg/m²) temozolomide. These alternative dosing schedules have been reported to be effective in patients with progressive or recurrent gliomas, although this has been recently disputed.14,15 Temozolomide is standard of care in the management of glioblastoma and advanced melanoma, and has demonstrated efficacy for malignant neuroendocrine tumors.16,17 In glioblastoma, temozolomide monotherapy is typically administered for six months following six weeks of concurrent radiotherapy and low-dose temozolomide.17 However, improved survival rates have been reported with use of temozolomide for 12–24 months, and there are cases of sustained remissions with continuous treatment out to eight years.18–20 Temozolomide is generally well tolerated as compared with most chemotherapeutic agents. Adverse effects are commonly mild and include nausea, vomiting, and fatigue. Myelosuppression is also common and dose-limiting, particularly lymphopenia and thrombocytopenia, however, severe myelosuppression leading to discontinuation of temozolomide is rare. Dose-dense regimes have been associated with an increased myelotoxicity and risk of opportunistic infection.21–23 Rare reports of myelodysplastic syndrome, aplastic anemia, and lymphoma have been described following temozolomide therapy.24,25 Other rare adverse events reported include hypersensitivity pneumonitis and hearing loss.26,27

Collective Experience with Temozolomide in Pituitary Tumors

The first reports describing the successful use of temozolomide in pituitary tumors were published in 2006.28,29 These early cases were pituitary carcinomas, but it was not long before significant responses were also reported for locally aggressive pituitary adenomas.30–32 There are now 50 published reports, both carcinomas and aggressive adenomas, in
which temozolomide has been used. More recent case series, each including 6–8 cases regardless of outcome, have contributed to correcting the initial positive publication bias.\(^3\)–\(^5\) The clinical spectrum of response to temozolomide is now recognized; whilst the majority demonstrate an excellent and sustained response, stable or transient responses and occasional cases with clear progressive disease are also seen. Figure 2 illustrates this clinical spectrum utilizing cases drawn from the literature.

Patient Characteristics

Table 1 summarizes the clinical and pathologic characteristics of the published case cohort. Temozolomide has been most commonly used for prolactin (PRL)-secreting (19 cases) and ACTH-secreting (19 cases) carcinomas and aggressive adenomas, reflecting the predominance of these tumor types amongst cases of aggressive pituitary tumors. There are 10 non-functioning (NF) pituitary tumors in the cohort and only two growth hormone (GH)-secreting tumors. Male patients with aggressive pituitary tumors form the majority of reported cases (29/42). The average patient age is 46.4 years, range 13–72. Whilst the range of measured Ki67 indices varies widely between cases, the aggressive nature of the tumors comprising this cohort is reflected in the high average Ki67 of 11.2 %. In the vast majority of cases, treatment with temozolomide is used as salvage therapy. Patients have typically undergone multimodal therapy, often including several surgeries and one or more courses of radiotherapy over several years. Tumors also display resistance to medical therapy with dopamine agonists and somatostatin analogs, although these agents are often continued whilst the patient is receiving temozolomide.

Perhaps reflecting the mounting international experience and encouraging evidence of efficacy is the recent report by Whitelaw et al. of use of temozolomide in a non-salvage setting. They successfully used temozolomide as a means of deferring radiotherapy in a pediatric patient and facilitated subsequent radiotherapy in another patient with chiasmal compression by effecting tumor shrinkage.\(^3\)–\(^5\)

Temozolomide Treatment Regimes

Patients are typically chemotherapy-naïve when temozolomide treatment is commenced. On the whole, temozolomide has been given as monotherapy. Significant side effects were encountered when temozolomide was commenced in combination with interferon or thalidomide,\(^2\)–\(^5\) however, in another two cases it was well tolerated when used with capecitabine or pasireotide.\(^3\)–\(^5\) In two cases demonstrating progressive disease whilst on temozolomide therapy alone, alternative chemotherapeutic agents have been added with no additional benefit; carmustine in one case and carboplatin in another case.\(^3\) The standard temozolomide-dosing regime of 150–200 mg/m\(^2\) /day for five days over 28 days is most commonly used. In the case series reported by Bush et al., a dose-dense regime was employed (75 mg/m\(^2\) /day for 21 days with seven days off). The most variable aspect in the temozolomide treatment regime between cases is therapy duration. More commonly, patients receive a prescribed course of 6–12 months of temozolomide. Early progressive disease has necessitated cessation as early as two or
three months, whilst other cases demonstrating good response continue on temozolomide beyond 24 months and in one patient five years.27,24,31,32

Adverse Effects

Temozolomide-related adverse effects have been reported in 22 of the 50 cases. Nausea, fatigue, headaches and thrombocytopenia are most frequently described and typically mild. However, fatigue contributed to a decision to cease treatment in three cases. Dose reduction or extension in dosing interval has permitted continuation of temozolomide in patients developing mild myelosuppression. Severe adverse events necessitating temozolomide cessation have occurred in two cases: in one patient agranulocytosis and the other sensorineural hearing loss.

Response to Temozolomide

Overall, 33 of 49 patients (67 \%) have demonstrated a response to temozolomide therapy. Both adenomas and carcinomas may show response. Figure 3 illustrates temozolomide response by pituitary tumor subtype. PRL and ACTH tumors had a higher response rate (84 and 72 \%, respectively) than NF tumors (40 \%), although a significant proportion of NF tumors demonstrated stable disease (40 \%). Invariably a clinical response predicted a subsequent radiological tumoral response, and in functioning tumors, a hormonal response as well. In just one case, a hormonal response was not accompanied by any clinical improvement or tumor shrinkage.28 When it occurs, response is typically seen within the first three months, leading some to propose a three-month treatment trial.24 However, maximal response is often only seen after 10–12 cycles of treatment.24,25 In addition, stable disease may be a valuable outcome; there is a low rate (16 \%) of reported tumor progression during temozolomide treatment.

The application of traditional RECIST (Response Evaluation Criteria in Solid Tumors) radiological criteria to report degree of tumor shrinkage (partial response >30 \% decrease in tumor diameter; complete response disappearance of tumor) may significantly underestimate the degree of tumor shrinkage observed in many responders. Most pituitary tumors that respond to temozolomide show a >50 \% tumor shrinkage, in some cases >80 \%, and in three cases complete response was seen in metastatic lesions.30–33,35 Similarly, hormonal responses can be remarkable, often occurring earlier and to a greater degree than radiological responses, and with more than half of cases demonstrating biochemical normalization. Hormonal response may translate into significant clinical benefits most obviously for ACTH or GH tumors.

Another notable feature seen in a number of pituitary tumors is a prolonged and sustained response following temozolomide cessation, with no tumor regrowth for as long as three years.24,30,33 Morphologic change in the tumor following response has been described in one case, with evidence of increased differentiation, may contribute to this phenomenon.26 However, eventual tumor regrowth is increasingly described.23,31,32

Unfortunately, a second course of temozolomide in the setting of tumor regrowth has to date not been effective40 (and personal communication with William Drake and Richard Ross). It is possible that a subset of tumor cells originally resistant to temozolomide explain eventual tumor regrowth. Alternatively, the development of additional acquired genetic alterations in the tumor may drive temozolomide resistance. Murakami et al. recently eloquently described transformation of an atypical prolactinoma into a pituitary carcinoma in association with acquired temozolomide resistance and the loss of MutS Homolog 6 (MSH6) (a MMR protein).

In patients with non-response or tumor progression, various alternative treatments have been tried. Trials of alternative chemotherapeutic agents have been largely unsuccessful.31,32,35 Bevacizumab (vascular endothelial growth factor [VEGF] inhibitor) has been used successfully in one case,47 whilst pasireotide has also been trialed.33

MGMT Status and Response to Temozolomide Therapy in Pituitary Tumors

MGMT is an evolutionarily conserved gene, responsible for repairing 06MeG cytotoxic adducts that may arise as a result of endogenous DNA
damage, or exogenously via ionizing radiation or chemotherapeutic agents such as temozolomide. Low MGMT expression and temozolomide efficacy has been repeatedly demonstrated in brain tumors, but also seen in melanoma and neuroendocrine tumors. MGMT methylation status does not correlate with non-neoplastic inflammatory cells, the latter extensively found in glioma specimens. However, MGMT methylation analysis has been reported in 20 cases: three of five methylated tumors showed clearly progressive disease. Furthermore, those primary NF pituitary adenomas with low MGMT expression were 9.35 times more likely to respond to temozolomide than tumors with intermediate or high MGMT expression. The presence of MGMT promoter methylation has been linked with response to temozolomide in glioblastomas. In fact, MGMT immunohistochemistry may be unreliable in glioblastomas because of difficulty in distinguishing MGMT expression in neoplastic from non-neoplastic inflammatory cells, the latter extensively found in glioma specimens. However, MGMT methylation status does not correlate with temozolomide response in pituitary tumors. MGMT methylation analysis has been reported in 20 cases: three of five methylated tumors and nine of 15 unmethylated tumors were associated with treatment response. Progressive disease has also been seen in cases demonstrating promoter methylation. Furthermore, MGMT promoter methylation is not the predominant mechanism causing loss of MGMT expression in pituitary tumors: of 10 cases with low MGMT expression by immunohistochemistry only four were found to be methylated. The mechanism responsible for loss of MGMT expression in pituitary tumors remains unknown. MGMT gene mutations have not been detected in pituitary tumors. Loss of heterozygosity at 10q26, the region containing the MGMT gene, has also not been identified in a small number of low MGMT-expressing pituitary tumors.

Figure 5: MGMT Expression by Immunohistochemistry and Temozolomide Response

![Figure 5](image-url)

MGMT = 06-methylguanine-DNA methyltransferase.

MGMT and Pituitary Tumor Biology

The observation of a pituitary tumor subtype difference in response to temozolomide, as well as differential expression of MGMT across pituitary tumors, have led to examination of MGMT expression in larger archived cohorts of unselected pituitary tumors. Overall in one such cohort, 13 % of pituitary tumors were found to have low MGMT expression (defined as <10 %), and 28 % and 59 % with intermediate (10–90 %) and high (>90 %) MGMT expression, respectively. There is a clear greater propensity for prolactin-producing tumors towards low MGMT expression, which is likely to account for the higher response rate of prolactinomas to temozolomide therapy. Some studies have not found significantly increased differences in MGMT expression between invasive and non-invasive pituitary tumors. However, other studies have reported a higher incidence of low MGMT expression amongst more aggressive pituitary tumor subtypes, including invasive Crooke’s cell adenoma and silent subtype 3 pituitary adenomas. A higher occurrence of low MGMT expression has been reported amongst primary surgical specimens of NF pituitary adenomas showing subsequent tumor regrowth. Furthermore, those primary NF pituitary adenomas with low MGMT expression had a shorter interval until re-operation. These limited studies do suggest a role for MGMT in pituitary tumor biology.

Future Directions

The identification of temozolomide as the first chemotherapeutic agent with significant efficacy in aggressive pituitary tumors represents a major advance in management. It is hoped the next few years will see further clarity develop in delineating the role of temozolomide in the treatment of pituitary tumors. There is excitement about the potential for its use earlier in the treatment algorithm, but also justifiable concern about the lack of long-term safety data in particular with regard to secondary malignancies.

One of the more pressing questions relates to the optimal length of temozolomide therapy. Response is invariably seen within three months, and this appears a good time frame for a therapeutic trial. In responding tumors, maximal benefit is most commonly seen within the first 12 months, but whether longer treatment would affect more prolonged responses is unknown. Various combination therapies may offer the possibility of enhanced clinical benefit, particularly in non-responding cases or tumors with high MGMT expression. MGMT inhibitors, such as 06-benzylguanine, in combination with temozolomide, have had limited success in resistant gliomas. Synergistic chemotherapeutic effect has been described for temozolomide in combination with bevacizumab, and there is interest in inhibition of poly (ADP-ribose) polymerase (PARP) (another DNA repair enzyme) and potentiation of temozolomide efficacy.

The use of temozolomide as salvage therapy for aggressive pituitary tumors is generally well accepted, including recommendation in recent Endocrine Society Clinical Guidelines for consideration of its use for malignant prolactinomas. The possibility of utilizing temozolomide earlier in the treatment paradigm has recently been raised. Whitelaw...
et al. have successfully used temozolomide in order to achieve tumor shrinkage in a tumor compressing the optic chiasm prior to administering radiotherapy. They also described temozolomide treatment in a pediatric patient as a means of deferring radiotherapy. Temozolomide has demonstrated radiosensitizing properties, and potential concurrent administration of temozolomide and radiotherapy may provide increased benefit.1

Whilst MGMT appears to play a primary role in determining response to temozolomide in pituitary tumors, a better understanding of additional resistance mechanisms is needed. Reports in glioblastoma have implicated high epidermal growth factor receptor expression and upregulation of stem cell gene pathways in MGMT-independent temozolomide resistance.2,3 In the author’s opinion, MGMT expression as determined by immunohistochemistry does provide guidance for more effective use of temozolomide in pituitary tumors. However, the wider application of MGMT immunohistochemistry into clinical practice requires the finalisation of standardised scoring methods. Finally, the role of MGMT in pituitary tumorigenesis and the mechanisms(s) responsible for loss of MGMT expression in pituitary tumors remain to be elucidated.

Prospective clinical trials would provide the ideal platforms to properly address many of the uncertainties surrounding the use of temozolomide in aggressive pituitary tumors. International collaborations will become immensely important in driving forward advancements in this challenging area of clinical practice.