Type 1 diabetes is a disease that affects about 150,000 youths in the US. It is characterized by an absence of insulin production by the β-cells of the pancreas. Patients with type 1 diabetes must administer insulin, either via injection or insulin pump, to achieve near-normal glucose metabolism and avoid life-threatening ketoadidasosis. Self-monitoring of blood glucose (SMBG) is a cornerstone of modern diabetes treatment. Monitoring of blood glucose provides the data necessary to make daily management decisions related to food intake, insulin dose, and physical exercise. In addition, monitoring enables patients to avoid acute complications of type 1 diabetes, namely hypo- and hyperglycemia and diabetic ketoacidosis. Additionally, monitoring can provide healthcare providers with the information needed to identify glycemic patterns, educate patients, and adjust insulin. Presently, youth with type 1 diabetes can self-monitor blood glucose via home blood glucose meters, or monitor glucose concentrations nearly continuously using a continuous glucose monitor. There are advantages and disadvantages to the use of either of these technologies. This article describes the two technologies and the research supporting their use in the management of youth with type 1 diabetes in order to weigh their relative pros and cons.

The purpose of this article is to provide an overview of the technologies and the research supporting their use in the management of youth with type 1 diabetes in order to weigh their relative pros and cons.

Self-Monitoring of Blood Glucose

Home blood glucose meters available on the market today have come a long way from the visual blood glucose strip tests available approximately 35 years ago. Nowadays, SMBG technology uses test strips containing either hexokinase or glucose oxidase chemistry. After application of a small drop of blood (~1 µl for some meters) and a series of chemical reactions, current home blood glucose meters yield a numerical measure of capillary glucose concentration either via colorimetry, photometry, or electrochemistry.

Thirty home blood glucose meters are available on the market today. All of these models meet at least the minimum standard of accuracy as established by the US Food and Drug Administration (FDA), which is currently: 95% of tests fall within 15 milligrams of the test reference for values less than 75 or within 20% of the test reference for values of 75 or greater. The features that most vary between meters and may make them more or less appropriate for pediatric patients include: cost, insurance coverage, size of the meter, test time, size of the blood sample required, memory capabilities, and special features (i.e., no code strips, appearance, etc.).
Blood Glucose Monitoring

User error is still the number one barrier to accurate results in SMBG and user factors that can impact accuracy include improper patient training, use of damaged or expired test strips, an uncalibrated meter, an inadequate blood sample, and a contaminated blood sample. The American Diabetes Association and the International Society for Pediatric and Adolescent Diabetes do not offer specific recommendations for the minimum daily frequency of SMBG tests in youth, but it is generally accepted that at least three SMBG checks per day is the minimum standard for youth with type 1 diabetes.

Multiple lines of evidence support the efficacy of SMBG in youth as a tool to achieve better long-term glycemic control, as measured by HbA1c. In an early study that recruited 89 school-age and adolescent patients with type 1 diabetes, Anderson et al. found that youths’ HbA1c levels improved as the frequency of daily SMBG tests increased. Specifically, at zero or one check per day, youth had a mean HbA1c value of 9.9 ± 0.44 %, while at four or more checks per day, they had a mean HbA1c Value of 8.3 ± 0.22 %. More recently, Ziegler et al. were able to replicate these findings in a larger sample and a broader range of youth (0–18 years). Adjusting for age, gender, diabetes duration, year of treatment, insulin regimen, insulin dose, body mass index, and treatment center, these researchers found that, for each additional SMBG check per day, youth experienced a 0.20 % decrease in their HbA1c level. It is thought that SMBG contributes to better HbA1c levels indirectly by increasing a patient’s ability to modify insulin and carbohydrate intake in order to achieve more consistent and normal glucose levels. However, research specifically identifying this relation between SMBG and HbA1c has not yet been published.

The advantages of SMBG are that it is relatively inexpensive, that it is easy to train youth to complete it, that it provides an accurate measure of capillary glucose concentrations, and that available glucose meters can offer features such as memory, downloading software, no coding strips, and small blood sample requirements. Disadvantages are the impact of user error on test accuracy, the need for multiple finger-stick blood samples each day, and the limited data provided (e.g., SMBG only provides a single snapshot of glucose concentrations, not trending data). Efficacy studies support the use of SMBG in diabetes management in youth, which suggests that it is likely to remain the most common form of blood glucose monitoring practiced by youth today.

Continuous Glucose Monitoring

CGM is increasing in use as an adjunct to SMBG or on its own. CGM technology includes blinded, retrospective models that can be deployed by healthcare providers for short-term monitoring of patients, and realtime monitors that are more typically reserved for personal use. Presently, the FDA has approved three models for use in diabetes, but only two systems are approved for children aged seven years and older. For very young children with type 1 diabetes (<7 years old), CGM represents off-label use.

CGM devices measure glucose subcutaneously in the interstitial fluid. A sensor is placed just under the skin, typically in patients’ buttocks, thighs, abdomen, or upper arms. The sensor is a glucose oxidase platinum electrode, which, in the presence of glucose in the interstitial fluid, generates an electrical current. Individual CGM devices measure the electrical current and generate an average glucose value every five minutes, which, depending on the monitor type, is either displayed in realtime or stored for downloading later. In order to receive continuous glucose values, CGM devices require daily calibration with values obtained via SMBG. In addition, for them to receive and either display or record glucose values, the units need to be fully charged and synchronized with the sensors.

Studies have demonstrated adequate accuracy rates, especially when measuring glucose values within the normal range. However, CGM values may not always be identical to concurrent SMBG values, which can raise some concern among families about their accuracy. While highly automated, CGM devices remain vulnerable to user error. Common sources of user error include failure to complete an adequate number of calibration tests, poor SMBG technique, and insertion or sensor-related site problems. Sensors may fall out if they are not adequately secured with additional tape or adhesives. This can be very upsetting for families, as they can cost as much as $70 each and, once removed, cannot be reused. In some cases, health insurance will cover a portion of the cost of CGM, but invariably there are still significant out-of-pocket expenses for families. In addition, youths may object to wearing a CGM device because of the additional needle stick, infusion site, and monitor CGM requires.

The most notable benefit of CGM is the wealth of time-series glucose data it provides. SMBG provides only snapshots of blood glucose concentration, and is limited by the number of finger-sticks a patient is willing to perform per day. In contrast, CGM can report up to 288 glucose values per day and yield data revealing temporal trends and patterns in glucose control. With CGM, patients are better able to detect asymptomatic hypoglycemia. Indeed, with realtime CGM (RT-CGM), patients can even set an alarm to sound if glucose levels are detected above or below a specific threshold, thus potentially allowing youths and parents to more readily treat these abnormal values. In addition, the continuous data stream generated by CGM is better equipped to detect glycemic variability, which may be associated with a future risk of microvascular disease. For healthcare providers, CGM can theoretically provide a vast amount of data to better inform insulin management and better educate youths and parents on the effects of food intake, insulin, and exercise, data regarding the impact of CGM on insulin management and education by providers are currently lacking. The one pediatric study that did test the impact of CGM-guided insulin adjustment by providers suggested no additional benefit over SMBG-guided insulin adjustment with regard to glycemic control.

In a large randomized trial that recruited 322 youth and adults with type 1 diabetes on either insulin pump therapy or multiple daily injections, researchers found a significant reduction in HbA1c levels (0.53 %) for adult patients in comparison with controls after six months of RT-CGM use. Unfortunately, for youth with type 1 diabetes, there was no difference in HbA1c between the control and CGM groups after six months. However, follow-up examination suggests there may have been a dose effect, as 83 % of adults reported CGM use at least six days per week, compared to 30 % of young adults (15–24 years) and 50 % of youth (8–14 years). This study did not find a difference in either time spent below the target glucose range or the frequency of severe
CGM Versus SMBG in Children with Type 1 Diabetes—The Pros and Cons

CGM may be associated with unique psychological concerns. It can be highly frustrating and upsetting for parents and youth to experience false alarms for hypo- or hyperglycemia, although it may be possible to reduce the false alarm rate by adjusting the threshold values further from the normal range. CGM may give youth and parents false confidence that with the significant influx of new data specific to daily glucose values perfect control can be achieved, when this is unlikely given all of the factors that can affect glucose levels. Finally, youth may resent CGM if the technology is used by care-givers to detect and chastise them for every high or low blood glucose value.

To conclude, the main advantage of CGM is that it can provide a near-continuous reading of interstitial glucose concentration, which adequately reflects blood glucose concentration and can help to identify trends and patterns in glucose control with only a single needle stick to place the sensor. In addition, in the case of RT-CGM, devices identify trends and patterns in glucose control with only a single needle stick to place the sensor. In addition, in the case of RT-CGM, devices identify trends and patterns in glucose control with only a single needle stick to place the sensor. 15

In conclusion, the accuracy and interferences in self-monitoring of blood glucose: the basics, Clin Diabetes, 2002;20:45–7.

10. 2008 resource guide. Blood glucose monitoring and data management systems. Before you buy a blood glucose monitor (also known as a blood glucose meter), check with your doctor and diabetes educator. Make sure the one you choose is well suited to your particular needs, Diabetes Forecast, 2008;61:R031–2, R034–6.