Treatment of Aggressive Pituitary Adenomas and Carcinomas—An Overview

Luis V Syro, MD,1 Leon D Ortiz, MD,2 Fabio Rotondo, BSc,1 Humberto Uribe, MD,1 Luis C Penagos, MD,2 Eva Horvath, PhD3 and Kalman Kovacs, MD, PhD4

1. Neurosurgeon, Department of Neurosurgery, Pablo Tobón Uribe Hospital and Medellin Clinic, Medellin, Colombia; 2. Neuro-oncologist, Division of Neuro-oncology, Cancerology Institute, Las Americas Clinic, Medellin, Colombia; 3. Research Associate, Department of Laboratory Medicine, Division of Pathology, St Michael’s Hospital, University of Toronto, Ontario, Canada; 4. Professor, Department of Neurosurgery, SOMA Clinic, Medellin, Colombia; 5. Professor, Division of Otolaryngology, Medellin Clinic, Medellin, Colombia; 6. Senior Scientist, Department of Laboratory Medicine, Division of Pathology, St. Michael’s Hospital, University of Toronto, Ontario, Canada; 7. Emeritus Professor, Department of Laboratory Medicine, Division of Pathology, St. Michael’s Hospital, University of Toronto, Ontario, Canada

Abstract
Most pituitary tumors are non-invasive, benign adenomas that remain confined to the sella turcica. Some of them recur, have a rapid growth rate, and invade surrounding tissues. These adenomas, considered aggressive pituitary tumors, are difficult to manage and present problems due to incomplete resection. A pituitary carcinoma is diagnosed when craniospinal and/or systemic metastases are documented. Treatment options for pituitary adenomas are surgery, radiation, and drugs. Recent publications report the efficacy of temozolomide in the treatment of aggressive pituitary adenomas and carcinomas. Indications for, results with, and side effects of temozolomide therapy in aggressive pituitary tumors and pituitary carcinomas are reviewed here. Alternative treatment options for resistant or recurrent pituitary tumors are also discussed.

Keywords
Pituitary adenoma, pituitary carcinoma, O6-methylguanine-DNA methyltransferase (MGMT), temozolomide, everolimus, bevacizumab

Disclosure: The authors have no conflicts of interest to declare.

Acknowledgments: The authors are grateful to the Jarislowsky and Lloyd Carr-Harris Foundations for their continuous support.

Received: June 4, 2012 Accepted: June 19, 2012 Citation: US Endocrinology, 2012;8(1):50-2. DOI: 10.17925/USE.2012.08.01.50

Correspondence: Luis V Syro, MD, Department of Neurosurgery, Hospital Pablo Tobón Uribe and Clinica Medellin, Calle 54 # 46-27, Cons 501, Medellin, Colombia.
E: lvsyro@une.net.co

Most pituitary tumors are non-invasive, benign adenomas that remain confined to the sella turcica. Although there is, at present, no accepted definition of aggressive pituitary adenomas, one would suggest that these have a tendency to recur after initial surgery. They have a rapid growth rate and invade surrounding structures such as the sphenoid and cavernous sinus as well as the skull base bone. They are clinically difficult to manage and present major problems due to incomplete resection.¹

Pituitary carcinomas are rare—0.2 % of all pituitary tumors. They present major diagnostic and therapeutic challenges. They may initially appear as benign pituitary adenomas subsequently transforming into an aggressive neoplasm, or they may be aggressive tumors from the beginning.²⁻⁴ A pituitary carcinoma is diagnosed when craniospinal and/or systemic metastases are documented.¹ Predicting pituitary tumor behavior remains a real challenge. Studies suggest that increased mitotic activity, high Ki-67, nuclear labeling index, and PS3 expression might be associated with tumor progression.⁵⁻⁶

Multiple treatment approaches—including surgery, external beam radiotherapy, gamma knife, drugs, and various chemotherapeutic agents—have been used. Until recently, the treatment of pituitary carcinomas was mainly palliative and did not seem to increase overall survival. Progression of disease after a diagnosis of pituitary carcinoma was variable; approximately 75 % of patients with systemic metastasis died of the disease within one year.² Recent publications report efficacy of temozolomide, an alkylating agent used to treat gliomas, in the management of aggressive pituitary adenomas and carcinomas.³⁻⁶ As in gliomas, the outcome of treatment might depend on the expression of O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme that counteracts the action of temozolomide.⁶⁻¹⁰⁻¹²

Temozolomide
Temozolomide is an alkylating chemotherapeutic agent related to a series of imidazotetrazines. Orally administered, it readily crosses the blood–brain barrier. It exerts its cytotoxic effect through methylation of DNA at the O6 position of guanine,¹⁰ which then mispairs with thymine during the next cycle of DNA replication. Temozolomide is accepted as an effective drug in the treatment of glioblastoma multiforme and other tumors of the central nervous system.¹⁰ Recent reports point out its efficacy in malignant neuroendocrine neoplasms,¹¹ melanas,¹²,¹³ and colorectal carcinomas.¹⁳
The standard therapeutic dose of temozolomide is 150–200 mg/m² on Days 1–5 of an 28-day cycle (5/28). Depletion of MGMT has been proposed as a means of tumor response to temozolomide. Experimental and clinical data have shown that response to temozolomide is schedule-dependent and that alternative dosing regimens may enhance the drug’s efficacy. The antiangiogenic effect of the drug is optimized by administering low doses on a frequent or continuous schedule without extended interruptions (‘metronomic’ chemotherapy), thus achieving MGMT depletion and improving response. Thus the recommended dose is 50 mg/m²/day without interruption over a 28-day cycle (28/28). Temozolomide absorption is minimally affected by food. Furthermore, no serious side effects have been reported when using temozolomide to treat patients with pituitary tumors. Common, non-hematologic adverse effects include nausea, vomiting, fatigue, headache, and constipation, most of which are mild-to-moderate.

As previously stated, MGMT is a DNA repair protein reversing the effect of temozolomide by removing alkylating adducts, counteracting its effect, and conferring resistance. Low-level expression in a wide spectrum of human tumors is thought to result from epigenetic silencing, by hypermethylation of the MGMT gene promoter. Low-level MGMT immunopositivity appears to be a predictive and prognostic marker in patients with temozolomide-treated glioblastomas. This observation has been extended to aggressive adenohypophysial tumors and carcinomas.

Pituitary Carcinomas Treated with Temozolomide

Pituitary carcinomas are difficult to manage despite the use of various therapies, including repeated surgeries, radiation, and drugs. Initial reports of the successful use of temozolomide in pituitary carcinoma were published in 2006.

To date, 20 cases have been treated. The time between disease presentation and temozolomide administration varied between five and 23 years (mean time 10.7). The group included eight PRL-secreting, eight ACTH-secreting, three clinically non-functional, and one silent corticotroph carcinoma. Fourteen of the 20 patients (70%) showed a clinical and radiologic response to temozolomide.

Aggressive Pituitary Adenomas Treated with Temozolomide

After the successful treatment reports in pituitary carcinomas, the first case of a pituitary adenoma treated with temozolomide was reported in 2006. The tumor, an aggressive prolactin (PRL)-secreting pituitary adenoma, with no MGMT immunopositivity, was investigated before and after temozolomide treatment by histology, immunohistochemistry, and electron microscopy. Significant clinical improvement, tumor shrinkage, and morphologic changes were evident. A 41-year-old patient with an aggressive silent subtype 2 corticotroph adenoma was subsequently described with no morphologic changes after temozolomide treatment. In that tumor, the cell nuclei were immunopositive for MGMT. Based upon these results, it was suggested that MGMT immunopositivity may predict responsiveness to temozolomide therapy.

To our knowledge, 32 cases of pituitary adenomas have been treated with temozolomide to date. The patients’ age varied from 20–71 years (mean age 51). Among the 32 cases, there were 11 PRL-secreting adenomas, 10 adrenocorticotropic hormone (ACTH)-secreting adenomas, seven clinically non-functioning adenomas, two silent ACTH adenomas and two growth hormone (GH)-secreting adenomas. The time between clinical presentation and introduction of temozolomide treatment was two to 23 years (mean time 10 years). Almost all tumors were irradiated and operated before starting temozolomide therapy. The rate of response to temozolomide was 62.5% (20 of 32 patients).

Response to Treatment and Indications

In three out of 52 cases, morphologic comparison was possible. These tumors had been investigated before and after temozolomide treatment. Two tumors responded to treatment temozolomide and showed hemorrhage, necrosis, focal fibrosis, inflammatory infiltration, fewer mitoses, and a lower Ki-67 nuclear labeling index. The third tumor showed no changes.

In patients responding to temozolomide, the clinical response was rapid and associated with a fast decrease in tumor volume. In patients with PRL- and ACTH-secreting tumors, an almost immediate reduction of plasma hormone levels was seen after the commencement of therapy, allowing the rapid evaluation of treatment response. Three basic patterns of radiographic changes were described on magnetic resonance imaging: tumor necrosis and hemorrhage, cystic change, and shrinkage. Within two or three months, it was possible to assess the response to treatment based on clinical, biochemical, and radiographic changes.

An inverse relationship between MGMT immunopositivity and response to temozolomide has been noted in several studies. Tumors with low-level MGMT immunopositivity showed a better clinical and radiologic response to temozolomide therapy than tumors with high-level MGMT immunopositivity. Demonstration of MGMT immunoreactivity appears to be useful in identifying non-responders to temozolomide treatment. However, some studies concluded that MGMT immunopositivity is not reliable and does not properly predict success of temozolomide therapy. Therefore, due to these contradictory results and also to the lack of other available medications, temozolomide therapy may be introduced independently of MGMT status.

Based on the published cases and the reported response rates, temozolomide therapy could be used in:

- aggressive PRL-secreting pituitary tumors resistant to bromocriptine or cabergoline that continue to grow after surgery and radiotherapy;
- aggressive ACTH-secreting tumors—especially Crooke’s cell neoplasms and Nelson’s syndrome variants—not cured by surgery and radiotherapy;
- recurrent, clinically non-functional pituitary tumors exhibiting continued growth after repeated surgeries and radiotherapy; and
- pituitary carcinomas.

Due to the lack of long-term follow-up, it has not yet been possible to define the most appropriate dosing regimen or duration of treatment. In patients resistant to temozolomide, new targeted therapies have been
proposed such as everolimus (a mammalian target of rapamycin inhibitor) or bevacizumab (a recombinant, humanized, antivascular endothelial growth factor monoclonal antibody).

Conclusion

temozolomide has been proven to be of value in the treatment of aggressive pituitary adenomas and carcinomas. The clinical and radiologic response rates are encouraging—62.5% in aggressive pituitary adenomas and 70% in pituitary carcinomas. According to several reports, an inverse correlation exists between MGMT immunoenexpression and therapeutic response to temozolomide. There are studies, however, that do not support this conclusion. Based upon published cases, a significant proportion of adenohypophyseal tumors to temozolomide show low-level MGMT immunoenexpression. Due to the lack of other available medications, temozolomide may be used independently of MGMT status.

According to the earlier paradigm, every tumor cell is the same in every tumor. Recent evidence indicates tumor cell heterogeneity. Various parts of the tumor undergo mutations and not every tumor cell has the same genetic profile. Thus some tumor cells will respond to chemotherapy while others will not. Despite tumor cell heterogeneity, we hope that, in the future, targeted and personalized therapies will be available for temozolomide-resistant patients.