Cardiovascular Health in Children with Diabetes

a report by

David M Maahs, MD and Stephen R Daniels, MD, PhD

1. Pediatric Endocrinologist and Assistant Professor of Pediatrics, Barbara Davis Center for Childhood Diabetes, University of Colorado; 2. Professor and Chairman, Department of Pediatrics, University of Colorado Denver School of Medicine

DOI: 10.17925/USE.2008.04.2.79

Significant progress has been made in diabetes care in the past few decades. However, people with diabetes continue to have earlier and increased morbidity and mortality from micro- and macrovascular disease. Extensive data exist to inform clinical guidelines for the care of adults with diabetes. However, limited data exist on cardiovascular disease (CVD) risk factors in youth with diabetes. Specifically, controversy exists on how aggressively CVD risk factors should be treated in youth with diabetes.

In this article we will review data on CVD and its risk factors in people with diabetes, with a specific focus on cardiovascular health in youth with diabetes, and how data on CVD in adults with diabetes applies to youth with diabetes.

Cardiovascular Disease and Its Risk Factors in Adults with Diabetes

Studies such as the Diabetes Control and Complications Trial (DCCT) have demonstrated that in people with type 1 diabetes intensive control of glycemia reduces the risk for the microvascular complications of diabetes such as retinopathy, nephropathy, and neuropathy. The Epidemiology of Diabetes Complications Study (EDIC) showed that the benefit from this intensive control on microvascular complications persists for up to eight years. Similarly, the UK Prevention of Diabetes Study (UKPDS) has shown that lower glycated hemoglobin (HbA1c) is associated with reduced microvascular complications in adults with type 2 diabetes. There are strong data supporting the role of intensive control of glycemia to reduce microvascular complications in both type 1 and 2 diabetes in adults, and data exist to suggest that rates of microvascular complications in people with type 1 diabetes have decreased in the past few decades—a time when overall control of diabetes has improved.

Data also exist on the relationship of glycemic control to reduction of macrovascular risk in types 1 and 2 diabetes; however, recent studies have raised questions about the optimum glycemic goals in the care of adults with type 2 diabetes. The DCCT/EDIC studies have shown that intensive glycemic control over a mean of 6.5 years reduced CVD complications by 57% after a mean of 17 years of follow-up. The Coronary Artery Calcification in Type 1 Diabetes (CACTI) study showed that participants with HbA1c <7.5% had reduced odds of progression of coronary artery calcification (CAC), which is a surrogate marker of coronary artery disease in young adults with type 1 diabetes. Similarly, the UKPDS has shown that myocardial infarctions were reduced by 14% for every 1% reduction in HbA1c in adults with type 2 diabetes. However, these recent studies have raised the question of how aggressive glycemic control goals should be in adults with type 2 diabetes, whether the benefits of intensive glycemic control outweigh the risks, and whether the timing of an intensive glycemic control intervention has an effect on CVD outcomes. Furthermore, while there are data to suggest that care for diabetes has improved, as evidenced by reduced rates of microvascular disease in the past few decades, data on CVD suggest that substantially less progress has been made in reduction of macrovascular disease rates in people with diabetes.

Cardiovascular Disease and Its Risk Factors in Youth with Diabetes

In addition to glycemic control, hypertension and dyslipidemia are also important CVD risk factors, with extensive data to support their role as targets to improve cardiovascular health in people with diabetes. Despite abundant data on the importance of control of blood pressure and dyslipidemia, adequate control of these CVD risk factors is frequently not achieved. There are limited data addressing these matters in children and adolescents. Therefore, despite extensive data that support aggressive treatment of CVD risk factors (glycemia, blood pressure, and cholesterol, among others) in adults with diabetes, the question arises as to how these data in adults apply to youth with diabetes and furthermore how these CVD risk factors should be treated in youth with diabetes.

Despite some uncertainty about how aggressive targets should be to optimize cardiovascular health in adults with diabetes, even fewer data...
Diabetes and Cardiovascular Risk

There is great hope that technological advances will lead to improved glycemic outcomes. For example, the recent Juvenile Diabetes Research Foundation (JDRF)-funded trial of continuous glucose monitors (CGMs) demonstrated a significant reduction in the number of subjects with type 1 diabetes to reduce their HbA1c below the goal of 7% in adults, but this outcome was not demonstrated in those 15–24 years of age who wore the CGM for only ~30% of the study period. Further psychosocial research is needed on barriers to improved care in youth with diabetes and how to overcome these challenges. Data on care for youth with type 2 diabetes are more limited. Reviews of type 2 diabetes in youth worldwide and its complications have recently been published.

Hypertension is a known CVD risk factor. Blood pressure should be checked at least annually in youth with diabetes and compared with age-specific percentile charts. ISPAD recommends treatment of blood pressure >90th percentile for age, gender, and height if lifestyle intervention is ineffective. The SEARCH for Diabetes in Youth study has reported a prevalence of abnormal blood pressures in 6.8 and 28.2% of youth with types 1 and 2 diabetes, respectively, with few youth receiving pharmacological treatment to lower blood pressure.

We have recently reviewed the data on dyslipidemia in youth with diabetes. Among youth with type 1 and 2 diabetes in the SEARCH study, 14 and 24% of youth with type 1 and 2 diabetes, respectively, had low-density lipoprotein cholesterol (LDL-C) >130mg/dl. Although the guidelines for the pharmacological treatment of dyslipidemia in youth with diabetes are relatively recent, the limited data suggest that few youth with diabetes and dyslipidemia are treated with pharmacological agents (<1%).

In addition to the well-established CVD risk factors of glycermia, hypertension, and dyslipidemia, other factors are known to have an adverse effect on CVD health, such as obesity, insulin resistance, smoking, and kidney disease (generally first manifested as albuminuria). Indeed, it has been proposed that the current prevalence of childhood obesity may result in an increase of 5–16% in coronary heart disease, with more than 100,000 extra cases attributable to this increased childhood obesity in the next 15 years. Obesity has a central role in the development of type 2 diabetes in youth and has also increased in youth with type 1 diabetes. The prevalence of obesity is similar in youth with type 1 diabetes to that in non-diabetic youth. Insulin resistance is increased in youth with type 2 diabetes, but also in youth with type 1 diabetes at levels similar to that of non-diabetic obese youth. In contrast to adults, in whom smoking cessation is a goal, in youth the goal is to prevent the initiation of smoking. Regrettably, an elevated prevalence of smoking has been reported in youth with diabetes, adding another avoidable risk factor for CVD. Albuminuria is an early manifestation of kidney disease and is reported in 5–10% of youth with type 1 diabetes. Of concern, the reported rates of microalbuminuria (or an elevated albumin-creatinine ratio) in youth with type 2 diabetes have been reported to be two to three times higher than in youth with type 1 diabetes.

How Aggressive Should Endocrinologists Be in the Treatment of Cardiovascular Disease Risk Factors in Youth with Diabetes?

As previously stated, no clinical trials exist on which to base treatment decisions of CVD risk factors in youth with diabetes. However, there are currently two clinical trials in progress in which the treatment of CVD risk factors in youth with diabetes will be addressed. The Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study is a multicenter clinical trial in which more than 700 youth with type 2 diabetes have been randomized to receive metformin, metformin plus a thiazolidinedione, or metformin plus intensive therapeutic lifestyle
In conclusion, while there are ample data in adults with both type 1 and 2 diabetes to support aggressive treatment of CVD risk factors including glycemia, blood pressure, and dyslipidemia, the data in youth with diabetes to support treatment of these CVD risk factors are limited. While guidelines exist from a number of organizations, these are based on expert opinion, extrapolation from studies in adults or youth with conditions other than diabetes, and epidemiological data. Although it has established that youth with diabetes have CVD risk factors, debate on how aggressive treatment of these risk factors should be will continue. Clinical trials and additional data from epidemiological studies are needed to demonstrate safe and cost-effective health benefits of treatment of CVD risk factors in youth with diabetes. In the next decade we should see the completion of various clinical trials and other epidemiological data on CVD complications of youth with diabetes who have been followed over time. Until such data are available, the debate will continue to be more reliant on opinion than actual evidence.