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Evidence from several large randomised clinical trials has linked

glycated haemoglobin (HbA1c) to vascular diabetes complications.1,2

Consequently, current diabetes management relies mainly on HbA1c to

assess quality of treatment and to adjust therapy. Optimal glycaemic

control aims to restore levels of HbA1c to as normal as possible to

reduce or avoid diabetic complications. However, traditional glucose

monitoring has considerable limitations in assessing glycaemic control

due to inability to detect fluctuations in glucose levels. Continuous

glucose monitoring (CGM) systems allow the detection of the

configuration of glucose patterns in several metabolic conditions.

Analysis of the CGM patterns revealed that in a portion of patients with

diabetes the same HbA1c level may generate unpredictable diurnal

glucose fluctuations with different magnitudes.3 As low glucose levels

often offset the high glucose levels, even patients with HbA1c

levels within the target range (<6.5%) show remarkable glucose

fluctuations.4 Thus, HbA1c fails to reflect glucose variability, i.e. the large

downward and upward swings in glucose levels during hypoglycaemia

and post-prandial periods, respectively. The clinically most important

manifestations of glucose variability are elevated post-prandial

glucose excursions and hypoglycaemia. Particularly in type 1 diabetes,

often glucose variability triggers hypoglycaemia, and data have linked 

large glucose excursions to the risk of multiple episodes of

hypoglycaemia. Although a growing body of evidence suggests that, in

addition to and independently of HbA1c, glucose variability may play 

an important part in the development of diabetes complications,

conclusive data from long-term randomised trials have yet to be

published. This report discusses the evaluation of glucose variability,

focusing on CGM technology, its associations with metabolic

characteristics and possible implications for glycaemic control.

Quantification of Glucose Variability and
Quality of Glycaemic Control 
Indices of Glucose Variability
Assessing difficult metabolic situations requires detailed information

about the degree of instability for optimal adjustment of therapy.

Glucose variability is estimated by computing characteristic indices

from glucose profiles. In the past, intermittent blood glucose

monitoring was mainly used for constructing such glycaemic profiles.

However, despite frequent measurements, traditional monitoring does

not provide the information required on glucose fluctuations. Using

CGM, several indices can be estimated and proposed for the

quantification of glucose variability. 

One simple measure of glucose variability is the standard deviation

(SD) around the mean glucose value. However, this index gives a

dispersion of all glucose measurements, is sensitive to outliers and

the same numerical values can have differing glycaemic patterns. We

recently developed computer software (unpublished) that provides

mean glucose profiles from CGM modal day plots on a single

timescale and the overall SD around the mean (see Figure 1). Periods

of lower and higher glucose variability are easily discerned, improving

the evaluation of glycaemic control and allowing appropriate
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therapeutic intervention. In addition, several subtypes of SD have

been described, as well as methods for their calculation.5

The mean amplitude of glycaemic excursions (MAGE)6 selects the major

glucose swings and represents the arithmetic mean of the difference

between consecutive glucose increases or decreases exceeding one

SD around the respective mean 24-hour glucose value. Thus, the MAGE

only incorporates data from large excursions and ignores the majority

of values of the glucose profiles. Although reasonable, the qualifying

limit of one SD is arbitrary, and minor imprecisions may have substantial

consequences for results. Furthermore, high MAGE readings will result

if only one major upward or downward glucose swing occurs during

two consecutive 24-hour periods. In order to exclude largely operator-

dependent influences when a graphical approach is used, we have

developed computer software for calculating MAGE values from CGM

system measurements (unpublished) with the criterion that glucose

excursions exceed one SD of the arithmetic mean of two successive 

24-hour periods, as illustrated in Figure 2.

The interquartile range (IQR)7 and sensor glucose range (SGR; glucose

maximum to glucose minimum) may also be utilised as indices of

glucose variability. Newer indices such as the continuous overall net

glycaemic action (CONGA),8 which reflects the SD of the difference in

glucose levels using different time windows, and the lability index (LI)9

have also been used for estimation of glycaemic variability. However,

some indices differ in their proportion of greater emphasis of either

hypoglycaemia or hyperglycaemia. MAGE emphasises hyperglycaemia

due to meals. LI correlates well with the clinical assessment of

glucose lability but may not provide sufficient weight to the degree 

of hyperglycaemia. CONGA, as an index to measure intra-day glucose

variability within defined time windows, may be specifically used in

cases in which glucose control is critical and needs therapeutic

adjustment. As yet, no single index functions as the ‘gold standard’ for

assessing glycaemic variability and interpreting CGM data. From a

practical point of view, the SD score is a simple, reproducible index

that can be easily computed from CGM data sets, as suggested above

(see Figure 1). MAGE may become the standard for assessment in

type 2 diabetes because of the magnitude of post-prandial

hyperglycaemic excursions and their suggested association with

cardiovascular complications.10

Indices of Quality of Glycaemic Control 
In addition to evaluation of glucose variability, various indices have

been developed to estimate the quality of glycaemic control to

complement clinical assessment of diabetes treatment, such as the

average daily risk range (ADRR), including the high (HBGI) and low

blood glucose index (LBGI),11 the index of glycaemic control (IGC)5 and

the glycaemic risk assessment diabetes equation (GRADE).12 These

measures quantify the risk for glycaemic extremes in addition to

describing temporal aspects of glucose fluctuations. 

As ADRR and GRADE, for example, include both hyper- and

hypoglycaemia, these quality indices may preferably be used to

quantify glycaemic control in type 1 diabetes, in which the problem of

hypoglycaemia is considerable. However, any index used to assess

glucose variability or quality of glycaemic control should be based 

on glucose level fluctuations during a time period that is representative

and sufficiently long for accurate computing. These time periods differ

among the indices, ranging from five days for the SD score and MAGE

to eight days for LI and GRADE.13 The time periods also depend on

whether CGM was performed blinded or unblinded, using retrospective

or realtime CGM systems. Complexity measures, e.g. de-trended

fluctuation analysis (DFA),14 may have some advantages over the

above-mentioned indices to explore gluco-regulatory responses in

subjects with progressing impairment of glucose tolerance. 

In view of the large data output from CGM, it is necessary to have a

minimum of meaningful estimates for the assessment of diabetes

control in clinical practice. Based on our experience, we recommend

the parameters listed in Table 1 as measures for overall glycaemic

control in addition to the long-term HbA1c measure. Since the indices

of glucose variability are intercorrelated5 in most cases, estimation of

one of these indices is sufficient.

Associations of Glucose Variability with
Measures of Glycaemic Control and 
Beta-cell Function
Regardless of which variability index is used to assess glucose

fluctuations, all indices correlate either weakly or not at all with

HbA1c,3,15 giving further support to the notion that glucose variability 

and HbA1c are different measures of diabetes control. Using simple
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Figure 1: Computerised Analysis of a Continuous
Glucose Monitoring Modal Day Plot Showing 
Mean Glucose Values and Standard Deviation
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Figure 2: Computerised Calculation of Mean 
Amplitude of Glycaemic Excursions for a Patient 
with Type 2 Diabetes

The continuous glucose monitoring (CGM) profile of two successive 24-hour periods is
shown. The mean values (mmol/l) for glucose (G), standard deviation (SD) and mean
amplitude of glycaemic excursions (MAGE) are indicated (boxes). The day, time-point of
glucose peaks and nadirs and the difference peak-to-nadir and nadir-to-peak (∆g),
respectively, are given in the table (bottom).
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correlation analysis, Table 2 shows the associations of conventional

measures of glycaemic control and CGM measures with some indices

of glucose variability in a cohort of 114 continuously monitored patients

with type 2 diabetes (aged 64±8 years, diabetes duration 7±5.7 years,

body mass index 30.8±4.2kg/m2, HbA1c 6.8±1.1%; means ± SD). Weak

correlations between HbA1c and the indices of glucose variability are

shown, whereas all other measures of glycaemic control, except

duration of hypoglycaemia, show markedly stronger correlations. 

The progressive loss of glucoregulation and stability of diabetes is

reflected by an increasing frequency and height of the amplitude of

glucose excursions. Although several factors might be involved in this

process, diabetes instability has been shown to parallel the insulin

reserve and secretory capacity.16 In type 1 diabetes the insulin reserve is

absent, while in type 2 diabetes a gradual exhaustion occurs, depending

largely on the degree of insulin resistance and disease duration. The

relationship between beta-cell function and glucose variability becomes

apparent on comparison of variability indices in type 1 diabetes and 

in various segments of patients with type 2 diabetes using oral

hypoglycaemic agents (OHAs) and insulin either alone or in combination.

Figure 3 shows an example of how the MAGE index, when going from

type 2 to type 1 diabetes, rises continuously with declining beta-cell

reserve, and thus with the need for exogenous insulin.

Indeed, a strong non-linear association was observed between glucose

variability (MAGE) and post-prandial beta-cell function in the segment

of OHA users (r=0.54; p<0.001). A similar relationship, although weaker,

was also found between MAGE and the basal beta-cell function (r=0.39;

p=0.025).17 Interestingly, MAGE did not correlate with insulin sensitivity

and fasting insulin or post-prandial insulin levels.

Glucose Variability and Improvement of
Glycaemic Control 
The quality of glycaemic control and adjustment of diabetes therapy

are primarily based on evaluation of HbA1c levels, as HbA1c often

represents the only measure of glycaemic control in routine diabetes

management. One frequent consequence of reducing HbA1c to

achieve target levels is an increased number of hypoglycaemic

episodes, which may have an unfavourable outcome – especially in

patients of higher age and with longer disease duration.18 Without

CGM, the frequency, magnitude and duration of blood glucose

fluctuations remain undetected. 

Pramlintide diminishes gastric emptying, reduces elevated plasma

glucagon, improves overall glycaemic control and attenuates glucose

fluctuation. A recent study in patients with type 1 diabetes showed

that addition of pramlintide to insulin therapy reduced the rate and

magnitude of post-prandial glucose excursions without increasing the

risk of hypoglycaemia.19

In paediatric patients with type 1 diabetes on a multiple daily injection

(MDI) regimen, treatment with insulin glargine, as the basal

component, significantly reduced glucose variability as measured by

SD score, M-value and MAGE, whereas neutral protamine Hagedorn

(NPH)/Lente insulin reductions were not significant.20 Continuous

subcutaneous insulin infusion (CSII) was even more effective at

reducing glucose variability than MDI.21 These data again demonstrate

that restoration towards the normal pattern of glucose fluctuations by

providing insulin in a more physiological manner results in improved

glycaemic control and higher treatment satisfaction. 

The incretin mimetic exenatide is a powerful agent that potentiates

post-prandial insulin release and stimulates beta-cell growth.22 When

used adjunctively in patients with type 2 diabetes sub-optimally

controlled with OHA, exenatide reduced the overall risk of glycaemic

Table 2: Correlation Between Measures of 
Glycaemia and Indices of Glucose Variabilty and 
Quality of Diabetes Control

Measures of SD Score IQR Sensor MAGE ADRR
Glycaemic Control Range

HbA1c 0.34 0.31 0.21 0.26 0.24

Mean glucose 0.49 0.52 0.43 0.51 0.26

Fasting glucose 0.39 0.46 0.31 0.45 0.32

Post-prandial glucose 0.48 0.53 0.41 0.51 0.43

Duration of 0.72 0.72 0.62 0.68 0.49

hyperglycaemia 

(>10mmol/l)

Duration of 0.16 0.07 0.13 0.07 0.36

hypoglycaemia 

(<3.3mmol/l)

At this sample size, correlations >0.3 are significant at p=0.001. Correlations <0.2 are not
significant. ADRR = average daily risk range; HbA1c = glycated haemoglobin; IQR = inter-
quartile range; MAGE = mean amplitude of glycaemic excursions; SD = standard deviation.

Figure 3: Increase of Glucose Variability as Measured by
Mean Amplitude of Glycaemic Excursions Index in
Relation to Insulin Requirement for Diabetes Control
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INS = insulin; MAGE = mean amplitude of glycaemic excursions; OHA = oral 
hypoglycaemic agents. 

Table 1: Parameters Derived from Continuous Glucose
Measurements for Evaluation of the Overall Quality of
Glycaemic Control

Quality of Glycaemic Control

Mean glucose

Duration of hyperglycaemia

Duration of hypoglycaemia

Hyperglycaemic episodes

Hypoglycaemic episodes

Glucose Variability 

SD score

Sensor glucose range

IQR

MAGE

CONGA

CONGA = continuous overall net glycaemic action; IQR = interquartile range; 
MAGE = mean amplitude of glycaemic excursions; SD = standard deviation.
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variability (ADRR) and glucose extremes to a greater extent than

insulin glargine at similar average glycaemia.23 Thus, decreased

glycaemic variability may represent an improved outcome and better

quality of life, even in cases where HbA1c is not significantly reduced. 

Glucose variability has recently emerged as an independent predictor

of intensive care unit (ICU) and hospital mortality.24 Even a modest

degree of hyperglycaemia occurring after ICU admission was

associated with a substantial increase in hospital mortality.25 The odds

ratio associated with glucose variability and that associated with

mean blood glucose levels were comparable in terms of predicting

mortality.26 Interestingly, the association between glucose variability

and mortality was strongest in the euglycaemic range. 

Mortality increased from 5.9% in the lowest quartile up to 37.8% in the

highest quartile of glucose variability.24 The data strongly suggest that

increasing glucose variability confers a strong independent risk of

mortality in critically ill patients. Estimation of glucose variability

should thus be taken into account in future investigations in glucose

monitoring in critically ill patients. Current glucose monitoring

technology using subcutaneous sensors still appears inadequate for

critical care patients requiring intensive insulin therapy. 

Glucose Variability and Diabetes Complications 
Several in vitro studies have previously shown that exposure of cell

cultures to rapid glucose fluctuations produced more severe cellular

damage than exposure to sustained hyperglycaemia.27,28 These

observations are consistent with in vivo studies that demonstrated

that hyperglycaemic spikes induced oxidative stress and increased

production of various mediators of inflammation, leading to

dysfunction of both vascular endothelium and pancreatic beta

cells.29,30 Oxidative stress thus likely plays a significant role in the

pathogenesis of diabetic complications. 

Monnier et al.31 used CGM measurements in patients with type 2

diabetes and found a close association between markers of oxidative

stress and the MAGE index; no such relationship was found with

markers of chronic sustained hyperglycaemia. This supports the

currently debated argument that glucose fluctuations are more

important than sustained chronic hyperglycaemia in the development

of secondary diabetes complications, primarily in type 2 diabetes.10,32 It

is somewhat surprising and difficult to explain that such a relationship

between glucose variability and elevated levels of oxidative stress

could not be confirmed in patients with type 1 diabetes.33

Soluble adhesion molecules are in fact well-known predictors of

cardiovascular disease.34 The finding of increased soluble P-selectin

levels in patients with type 2 diabetes with glucose instability35

indicates the involvement of glucose fluctuations in the dysfunction of

vascular endothelial cells. Evaluation of hard clinical end-points in

prospective analyses further revealed that glucose excursions during

post-prandial times are strong predictors of retinopathy36 and

cardiovascular events.37,38 In light of current data, it is clear that glucose

variability can no longer be ignored as an important factor in glycaemic

control.39 However, to definitively conclude that reduction of glucose

variability can reduce the risk of vascular complications in diabetes

and the increased mortality in critically ill patients, randomised long-

term clinical trials using CGM technology and standardised measures

for glucose variability must be performed. 

Conclusion
The application of CGM systems in patients under ambulatory and fed

conditions allows the assessment of individual glucose patterns in

type 1 and type 2 diabetes. Analysis of the glucose dynamics reveals

remarkable glucose fluctuations, even with HbA1c levels within the

target range. In view of accumulating data that glucose variability

represents an independent factor for micro- and macrovascular

complications, standardised estimates of glucose variability and the

quality of glycaemic control are of clinical importance. A number of

indices have been proposed to assess glycaemic control. Because 

of the information density, CGM data sets provide a unique

opportunity to calculate these indices using appropriate computer

software. Although there has not yet been consensus as to which of

the indices should be used in clinical practice, we propose SD score

or IQR and MAGE to measure glucose variability and GRADE to assess

the quality of glycaemic control, but additional indices may be

computed from CGM data. The use of these indices in conjunction

with HbA1c will significantly contribute to the improvement of current

glycaemic management. To conclusively determine whether

reduction of glucose variability reduces the risk of late diabetes

complications or mortality in critically ill patients, randomised clinical

trials using CGM must be performed along with a systematic

approach to evaluating these data. n
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