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The Incretin System and Type 2 Diabetes

The Impact of Diabetes and Patient Needs
With the increasing problem of obesity related to sedentary lifestyles

and calorie-rich diets, the incidence and prevalence of type 2 diabetes

are increasing at an alarming pace. Diabetes has a major impact in

terms of patient quality of life and is associated with significant

economic burden in terms of medical costs and lost productivity. In

2007, it was estimated that 57 and 24 million North Americans had pre-

diabetes and diabetes, respectively.1 Estimated annual costs for

diabetes in 2007 were $172 billion.1 From a European perspective, it has

been estimated that diabetes affects approximately 3–4 million 20–39-

year-olds, 20 million 40–59-year-olds, and 30 million 60–79-year-olds.2

Pre-diabetes and type 2 diabetes are closely associated with obesity and

other major cardiovascular risk factors, such as dyslipidemia and

hypertension. Diabetes can also exacerbate the risks posed by other

cardiovascular risk factors.1 With the incidence of diabetes increasing in

both older and younger age groups, society is facing a burden of diabetes-

associated morbidity and mortality. In addition, with many treatments for

diabetes promoting weight gain, there is a need for treatments that do not

exacerbate obesity and have a low risk for hypoglycemia.

The Incretin System
The incretin effect is the greater increment in plasma insulin levels

induced by an equivalent glucose load administered orally rather than

intravenously. It is mediated via endocrine peptide hormones secreted by

the intestine in response to nutrient exposure. The two major incretin

hormones are glucagon-like peptide-1 (GLP-1) and glucose insulinotrophic

polypeptide (GIP), which in healthy individuals may be responsible for

around 70% of the post-prandial insulin response.3

There is a reduction of the incretin effect in individuals with type 2

diabetes, which can be rectified through the administration of

exogenous native GLP-1.3,4 Hence, continuous intravenous infusion of

GLP-1 in subjects with type 2 diabetes increases insulin secretion,

reduces glucagon secretion, and lowers plasma glucose.5 The effect of

GLP-1 is glucose-dependent, so despite ongoing infusion of GLP-1,
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insulin levels return toward basal levels and plasma glucose stabilizes

when normal fasting plasma glucose concentrations are reached.5 This

glucose dependence implies that drugs targeting the incretin system

should have a low inherent risk of inducing hypoglycemia. 

GLP-1 also has a number of other effects that could benefit individuals

with type 2 diabetes. In vitro and animal studies have demonstrated that

native GLP-1 promotes beta-cell neogenesis and preservation, so GLP-1

treatment could potentially help to preserve beta-cell mass and improve

beta-cell function in patients with type 2 diabetes.6 GLP-1 promotes

satiety, slows gastric emptying, and is associated with reduced energy

intake in humans,7 suggesting that GLP-1 receptor agonists may support

weight reduction. GLP-1 increases renal sodium excretion and has

favorable effects on endothelial dysfunction, factors that can potentially

explain the decrease in systolic blood pressure observed after long-term

treatment with GLP-1 agonists.8,9 GLP-1 also has beneficial effects on the

heart, such as protecting myocardial cells in ischemic reperfusion injury

models and improving cardiac function following acute myocardial

infarction.6,10,11 These actions could provide benefits for patients with

type 2 diabetes and associated comorbidities.

While exogenous continuous administration of native GLP-1 showed

therapeutic potential,5 the use of recombinant human GLP-1 would 

not be clinically useful. Recombinant GLP-1 cannot be administered

orally and the native peptide is rapidly degraded by dipeptidyl

peptidase-4 (DPP-4) following intravenous injection, giving it an in vivo

half-life of only two minutes.12 It has therefore been necessary to

develop mimetics or analogs of human GLP-1 that are much more

resistant to DPP-4 degradation than the native hormone. This strategy

has produced the GLP-1 receptor agonists exenatide and liraglutide,

which are administered by subcutaneous injection. 

Another strategy has been to develop inhibitors of DPP-4 to enable

concentrations of native GLP-1 to increase. This approach is less

specific, however, as DPP-4 inhibitors also increase endogenous 

GIP concentrations. Two DPP-4 inhibitors, sitagliptin and saxagliptin,

are currently approved in the US. Sitagliptin, vildagliptin, and

saxagliptin are approved in the EU. Another DPP-4 agent, alogliptin,

has postponed its US and EU approval submissions in order to carry

out additional safety studies, as required by the US Food and Drug

Administration (FDA). 

One important difference between these two therapeutic approaches is

that GLP-1 receptor agonists induce pharmacological levels of GLP-1

activity, while DPP-4 inhibitors preserve physiological levels. In addition,

while GLP-1 receptor agonists act only through GLP-1, inhibition of DPP-

4 is likely to affect concentrations of both GLP-1 and GIP, as these

molecules are both substrates for the DPP-4 enzyme.13

While GLP-1 concentrations are reduced in individuals with type 2

diabetes, however, its insulinotrophic action is relatively well

preserved.13,14 By contrast, while GIP concentrations are largely

unaffected in type 2 diabetes, its insulinotropic action is impaired.13

These characteristics of GLP-1 receptor agonists and DPP-4 inhibitors

result in functional differences between the two approaches, which

will now be discussed.

Exenatide and Liraglutide—
The Glucagon-like Peptide-1 Receptor Agonists
Basic Properties
Exenatide (synthetic exendin-4) is a recombinant peptide based on a

salivary product of the ‘gila monster’ lizard (Heloderma suspectum).15

Exenatide is a 39-amino-acid peptide that has a 53% identical sequence

to human GLP-1. Exenatide is a GLP-1 mimetic with similar potency to

native GLP-1 but with partial resistance to DPP-4.16

Exenatide was approved in the US in 2005 as an add-on therapy to

improve glycemic control in patients with type 2 diabetes who have not

achieved adequate glycemic control with metformin, a sulfonylurea

(SU), a thiazolidione (TZD), or combinations of metformin and an SU or

TZD.15 European marketing approval was gained in 2006 for combined

therapy with metformin, SUs, TZDs, or combinations of oral antidiabetes

drugs (OADs).17

Following subcutaneous injection, exenatide reaches peak plasma levels

at approximately two hours, has a plasma half-life of around three to four

hours, and induces reductions in glucose concentrations for five to seven

hours.18,19 This means that exenatide requires twice-daily dosing 0–60

minutes before a meal and primarily acts to control post-prandial blood

glucose after breakfast and dinner.19 Exenatide is predominantly

eliminated by glomerular filtration, therefore dosage escalation should

be carried out cautiously in patients with moderate renal impairment and

it is not recommended for individuals with end-stage renal disease or

severe renal impairment.15 A long-acting exenatide formulation requiring

once-weekly dosing is also currently in clinical development.19–21

Liraglutide, the first once-daily human GLP-1 analog, is approved for use

in the EU22 and is still under FDA review in the US. It is a synthetic analog

of human GLP-1 with a 97% identical amino acid sequence that has been

modified by the addition of a fatty acid side chain and a glutamic acid

spacer. This means that liraglutide self-associates into heptamers, which

delays absorption from the injection site.23 Once in the circulation, the

fatty acid side chain may provide the molecule with partial resistance to

DPP-4 via reversible binding to serum albumin. These attributes mean

that following a single dose of liraglutide, peak plasma levels are reached

after nine to 12 hours and the drug has a half-life of 13 hours.24 In

addition, liraglutide achieves increased plasma concentrations for up to

24 hours following a single subcutaneous injection and steady-state

levels are achieved quickly, which supports once-daily dosing.24,25 It can

be administered at any time of day irrespective of meals, although

individual users should inject at the same time each day. Liraglutide is

metabolized in the same way as large endogenous proteins and there is

no single organ responsible for elimination.22 The European approval

recommends that liraglutide can be used without dose adjustment in

patients with mild renal impairment.22 However, given limited therapeutic

experience in patients with moderate renal impairment and a lack of

therapeutic experience in patients with severe renal impairment, use in

these populations is not recommended.22

Clinical Efficacy
The clinical efficacy of exenatide has been examined in a large number of

clinical trials including the AMIGO (AC2993: Diabetes Management for

Improving Glucose Outcomes) studies.26–28 Glycated hemoglobin (HbA1c)
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reductions of 0.80–0.86% were observed in the three AMIGO trials where

exenatide treatment was added to various OAD combinations (see Figure

1).26–28 Other trials have demonstrated that exenatide offers HbA1c

reductions that are non-inferior to insulin glargine29–30 or insulin aspart31

(see Figure 1). Exenatide treatment was associated with weight reductions

of 1.6–2.8kg (see Figure 2).26–28 These data are in agreement with a meta-

analysis of trials involving exenatide, which indicated an average reduction

in HbA1c of approximately 1.0%, a reduction in fasting blood glucose of

approximately 25mg/dl, and weight reductions of 2–3kg over 30 weeks.32

Exenatide was associated with weight benefits versus insulin glargine

(between-group difference -2.2kg; p<0.001)29 and insulin aspart (-5.4kg;

p<0.001).31 Higher rates of gastrointestinal adverse events were observed

with exenatide than with insulins.29–31 A long-term evaluation of patients

who continued exenatide treatment following the AMIGO studies has

suggested that initial improvements in glycemic control and weight loss

continued over a two-year period.33 Of 1,446 individuals included in the

original intention-to-treat population, however, only 283 completed the

two-year extension, so loss of approximately 80% of the original study

population may have introduced some bias in the study findings.33

Liraglutide has been studied in the LEAD (Liraglutide Effect and Action in

Diabetes) trials,34–39 which were designed to investigate liraglutide as

either monotherapy or in combination with one or two OADs and

compare them against some commonly used therapies for type 2

diabetes (see Table 1).34–39 Liraglutide treatment was associated with

reductions in HbA1c of between 1–1.5% in the LEAD trials (see Figure

1).34–39 Liraglutide induced significantly greater reductions in HbA1c than

comparator treatment in all but the LEAD 2 trial,35 in which it was similar.

The LEAD 6 study compared liraglutide 1.8mg once daily and exenatide

10µg twice daily as add-ons to metformin and/or SU therapy.39 In 

LEAD 6, mean HbA1c reduction was significantly greater with liraglutide

treatment than with exenatide (-1.12 versus -0.79%; p<0.0001) and

mean fasting plasma glucose was significantly lower with liraglutide 

(-29mg/dl) compared with exenatide (-10.8mg/dl; p<0.0001).39 Both

liraglutide and exenatide were well tolerated. Nausea was less

persistent with liraglutide than with exenatide (p<0·0001). Minor

Figure 1: HbA1c Reductions with Exenatide 10µg Twice 
Daily (A)26–31 and Liraglutide 1.8mg Once Daily (B)34–39
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Figure 2: Weight Reductions with Exenatide 10µg Twice
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hypoglycemia was also less frequent with liraglutide than with exenatide

(1.93 versus 2.60 events per patient per year; p=0.01).39 With the

exception of LEAD 1, in which liraglutide plus glimepiride treatment 

was weight-neutral,34 in the other studies liraglutide treatment was

associated with weight reductions of approximately 2–3kg (see Figure

2).35–39 Systolic blood pressure reductions of between 2.3 and 5.6mmHg

were also observed with liraglutide treatment (see Figure 3). In the head-

to-head comparison of liraglutide and exenatide (LEAD 6), the decrease

in systolic blood pressure by 2.5 and 2.0mmHg, respectively, was not

significantly different between the groups.39

Beta-cell Effects
Studies in animal and in vitro models suggested that GLP-1 receptor

agonists may promote pancreatic beta-cell neogenesis and preservation.

These initial observations have been supported by data from the LEAD

trials showing improvements in beta-cell function by a homoeostatic

model assessment (HOMA) index of beta-cell function (HOMA-B) of

27–35% from baseline following liraglutide treatment.34–39 Similar

improvements in HOMA-B were observed with exenatide.40,41 Liraglutide

and exenatide also improved other measures of beta-cell function, such

as the pro-insulin to insulin ratio, as well as other non-beta-cell-related

improvements in glycemic measures, such as the HOMA-index of insulin

resistance. These results suggest that GLP-1 receptor agonists have the

potential to improve beta-cell function, a key underlying pathology in

type 2 diabetes. Whether this is reflected in improved durability of

glycemic control needs to be tested in long-term clinical trials.

Adverse Side Effects
As expected from the glucose-dependent glucose lowering of GLP-1, the

GLP-1 receptor agonists are associated with low hypoglycemia rates 

in clinical studies. Hypoglycemia was most commonly reported when

GLP-1 receptor agonists were combined with SUs, so prescribing

information for exenatide and liraglutide both include a recommendation

to reduce SU dosing when adding a GLP-1 receptor agonist. Individuals

may also experience nausea when therapy is initiated, which in most

cases ceases within four weeks. This probably relates to delayed gastric

emptying. Gradual dose titration of both exenatide and liraglutide may

help to avoid this potential side effect.41,42

The Dipeptidyl Peptidase-4 Inhibitors
DPP-4 inhibitors act by increasing endogenous GLP-1 and GIP activity.

However, only GLP-1 retains insulinotrophic activity in individuals with

type 2 diabetes. There is evidence that DPP-4 inhibitors induce lower

placebo-corrected HbA1c reductions (0.7–1.0%) compared with GLP-1

receptor agonists (1.0–1.5%),32,34–38,43 but this needs to be confirmed in

head-to-head trials. There are a number of DPP-4 inhibitors in

development, including alogliptin and linagliptin; however, this section

will concentrate on sitagliptin and saxagliptin, as these agents have

received regulatory approval in the US. 

Sitagliptin
Sitagliptin is approved for use at a dose of 100mg/day as either

monotherapy or in combination with metformin or TZDs in the US.44 In

patients with moderate or severe renal insufficiency the dose of

sitagliptin should be reduced to 50 and 25mg/day, respectively.44 In the

EU, sitagliptin is approved for use as dual or triple combination therapy

with metformin, SUs, or TZDs and as monotherapy where metformin is

contraindicated or not tolerated. In addition, sitagliptin is indicated as

an add-on to insulin (± metformin) when diet and exercise plus insulin

do not achieve adequate glycemic control. At doses ≥100mg,

sitagliptin inhibits ≥80% of DPP-4 activity over 24 hours.45 This results

in at least a two-fold increase in post-meal levels of endogenous GLP-

1 compared with placebo.45–47 The greatest HbA1c reductions reported

with sitagliptin have been observed when it has been used in

combination with metformin in previously OAD-naïve patients

(placebo-adjusted reductions of -0.83 and -1.57% for sitagliptin 100mg

and sitagliptin 100mg plus metformin 1,000mg, respectively).48 This

Figure 3: Systolic Blood Pressure Reduction with
Liraglutide 1.8mg Once Daily34–39
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Table 1: The LEAD Trials Examined the Role of Liraglutide
Therapy Across a Range of Treatment Intensities 

Study               Liraglutide Group   Active Comparator   Placebo and 
                                                                                        Background Therapy
LEAD 134 Liraglutide + Rosiglitazone + Glimepiride

glimepiride glimepiride

LEAD 235 Liraglutide + Glimepiride + Metformin

metformin metformin

LEAD 336 Liraglutide Glimepiride No placebo group

monotherapy monotherapy

LEAD 437 Liraglutide + No active Metformin + 

metformin and comparator group rosiglitazone

rosiglitazone

LEAD 538 Liraglutide + Insulin glargine + Metformin + 

metformin and metformin + glimepiride

glimepiride glimepiride

LEAD 639 Liraglutide + Exenatide + No placebo group

metformin and/ metformin and/

or glimepiride or glimepiride

Appropriate placebos for both liraglutide injections plus active comparators were included in all
treatment groups.

SBP = systolic blood pressure.
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effect may reflect the fact that metformin increases GLP-1 secretion

and sitagliptin prolongs its half-life.19 Measures of beta-cell function

such as HOMA-B (12% improvement, 95% confidence interval [CI]

9.45–14.60) and pro-insulin/insulin ratio (-0.06, 95% CI -0.08 to -0.04)

were also significantly improved with sitagliptin versus placebo,

although HOMA-B was not significantly improved versus active

comparators (5.64%, 95% CI 0.38–10.90).49

Saxagliptin
Saxagliptin has been studied as a monotherapy in treatment-naïve

patients or as an add-on therapy to metformin or an SU.50–52 The lower

recommended dosage of saxagliptin (2.5mg/day) should be used in

individuals with moderate or severe renal disease.53 In treatment-naïve

patients, 24 weeks of saxagliptin monotherapy (10mg dose) resulted in

an HbA1c reduction from baseline (mean 7.9%) of -0.54 versus +0.19% for

placebo (p<0.0001).50 Adjusted mean fasting plasma glucose was

significantly reduced from baseline at -17mg/dl with saxagliptin versus

+6mg/dl for placebo (p<0.0001).50 No cases of confirmed hypoglycemia

were reported.50 In patients failing with metformin monotherapy,

saxagliptin (10mg/day) plus metformin demonstrated statistically

significant adjusted mean decreases from baseline to week 24 versus

placebo in HbA1c (-0.58 versus +0.13%; p<0.0001) and fasting plasma

glucose (-20.50 versus +1.24mg/dl; p<0.0001).52 Approximately 5% of

patients reported hypoglycemic episodes in each treatment arm.52

Weight reductions were 0.53kg for saxagliptin plus metformin and 0.92kg

for placebo plus metformin.52 A third study examined the efficacy of

adding saxagliptin to suboptimal doses of glyburide (7.5mg/day) versus

uptitration of glyburide (to a maximum of 15mg/day).51 Saxagliptin 5mg

reduced HbA1c by 0.64 versus +0.08% for uptitrated glyburide (p<0.0001)

and fasting plasma glucose by -10 versus +1mg/dl for uptitrated

glyburide.51 Reported hypoglycemic events were comparable for

saxagliptin (14.6%) and uptitrated glyburide (10.1%).51

Comparison of the Two Drug Classes
Like GLP-1 receptor agonists, DPP-4 inhibitors are associated with a low

risk of hypoglycemia. Few hypoglycemic events have been reported in

clinical trials, although as with GLP-1 receptor agonists higher rates

have been reported in combination therapy with SUs. In contrast to 

GLP-1 receptor agonists, DPP-4 inhibitors are weight-neutral. Adverse

gastrointestinal events are less likely with DPP-4 inhibitors than with

GLP-1 receptor agonists. These differences between the two drug

classes may reflect the level of GLP-1 receptor stimulation. While the

DPP-4 inhibitors can restore endogenous GLP-1 concentrations in

individuals with type 2 diabetes, they do not raise GLP-1 to the

pharmacological levels achieved by the GLP-1 receptor agonists.13,20

In addition to differences in GLP-1 activity, there is a potential concern

with the specificity of action of DPP-4 inhibitors because DPP-4 is

involved in immunoregulation in addition to its role in the incretin

system. The possibility of immunological effects has been suggested

as increased rates of infections (nasopharyngitis and urinary tract

infections) have been observed in some trials.32 In addition, post-

marketing reports of serious allergic and hypersensitivity reactions in

patients treated with sitagliptin, such as anaphylaxis, angioedema, 

and exfoliative skin conditions, have been reported.44 Overall,

however, the DPP-4 inhibitors appear to be very well tolerated in the

majority of patients.

Conclusions
Incretin-based antidiabetes therapies offer patients the potential to

target key pathogenic mechanisms in type 2 diabetes in addition 

to lowering blood glucose. Across trials, GLP-1 receptor agonists

induced mean HbA1c reductions of approximately 0.8–1.5%. For DPP-4

inhibitors HbA1c reductions were around 0.7–1.0%. The GLP-1 receptor

agonists also bring additional benefits, such as weight loss and blood

pressure reduction. These treatments are simple for patients to self-

administer and titrate and, for liraglutide, dosing is not dependent on

food intake. The risks of serious adverse side effects, such as

(particularly severe) hypoglycemia, are low; this, together with weight

benefits and less/no necessity for daily blood glucose monitoring, is

likely to facilitate improved patient adherence. 

From a physician’s perspective, therapies that target the incretin

system may be a useful treatment option for patients with type 2

diabetes, due to their clinical efficacy, good tolerability, and low risk 

of hypoglycemia and their potential to improve beta-cell function.

Incretin-based therapies offer a promising novel treatment modality

for individuals with diabetes, with added benefits and the potential 

for beta-cell protection; the latter now requires study in long-term

clinical trials. n
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