
The ability of an organism to respond to stressful stimuli is

fundamentally important to that organism’s continuing survival.

Recognition of a stressor elicits a range of physiological changes that

enable the organism to cope and to facilitate the restoration of

homeostasis. Many of these physiological changes are mediated via

activation of the hypothalamo–pituitary–adrenocortical (HPA) axis and

the consequent secretion of glucocorticoids (GCs) by the adrenal

gland. Stimulation of the HPA axis is triggered by neural and humoral

mechanisms that converge on the parvocellular neurones in the

hypothalamic paraventricular nucleus (PVN) and cause release of

corticotrophin-releasing hormone (CRH) and arginine vasopressin

(AVP) into the hypothalamo–hypophyseal portal complex for

transportation to the anterior pituitary gland. Here, these

neurohormones bind to specific CRH and AVP receptors (CRH-R1 and

V1b, respectively) on corticotroph cells to induce the release of

corticotrophin (adrenocorticotrophic hormone [ACTH]) into the

systemic circulation. ACTH acts within the adrenal glands to increase

the synthesis and release of GCs, cortisol (in man and other primates)

and corticosterone (in rodents). The secretion of these steroid

hormones is further regulated by complex negative feedback effects

of the GCs themselves on the pituitary gland, hypothalamus and

extra-hypothalamic centers in the brain (e.g. hippocampus,

brainstem). GCs were originally named on the basis of their influence

on metabolic processes, specifically the generation of glucose from

protein and lipids. However, GCs also exert a plethora of effects that

together serve to maintain homeostasis. GCs thus prepare the

organism to respond to stress and also protect the organism from 

the stress itself, in part by limiting the pathophysiological responses

(e.g. inflammation) to the stress that, if left unchecked, may

themselves threaten homeostasis.1

Glucocorticoids
Regulation of Plasma and Intracellular 
Glucocorticoid Levels
How do stressful stimuli activate the HPA axis and thus precipitate GC

secretion? The PVN is the key site within the brain where many 

stress-sensitive ascending and descending neural pathways converge

and trigger HPA activation. Fibers originating in the brainstem,
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prefrontal cortex, hippocampus, raphe nucleus, and amygdala are

particularly important in this regard. These pathways use a range of

neurotransmitter/neuromodulator substances to modulate the

secretion of CRH and AVP, including acetylcholine, noradrenaline, 

5-hydroxytryptamine, gamma-aminobutyric acid, neuropeptide Y,

endogenous opioids, and various growth factors and cytokines.

However, while categorically distinct stressors (i.e. physiologic versus

emotional) use distinct and specific pathways and transmitters, they

recruit largely the same select group of genes within the PVN2 to

induce release of CRH and AVP and, thus, secretion of GCs.

Secretion of GCs into the circulation occurs in a pulsatile and circadian

fashion. Pulse frequency is approximately one to three pulses per hour3

in man; variations in pulse amplitude over the 24-hour cycle underpin

the circadian profile of maximal GC levels in the morning, prior to

awakening (approximately 800 nM), and low levels in the evening

(approximately 200 nM).4–6 Plasma cortisol levels are further increased

by stress and, depending on the nature and intensity of the stress, may

rise as much as tenfold above basal levels.1

GCs in the bloodstream are largely bound to plasma proteins (~90 %),

in particular cortisol-binding globulin (CBG).7 Only the free steroid can

cross cell membranes and gain access to the intracellular receptors

that mediate the biological effects of the steroids. Therefore, binding to

plasma proteins limits the access of circulating GCs to their receptors

by restricting entry to target tissues. However, in certain conditions

(e.g. inflammation), cortisol may be released from CBG in the target

tissues by the actions of human leukocyte elastase, which cleaves

CBG.8 In addition, some tissues possess membrane-bound CBG

receptors, which can internalize both the binding protein and the

associated cortisol (see Figure 1).9

Two further mechanisms determine the bioavailability of free cortisol

within the cell. The first, termed pre-receptor ligand metabolism, is

mediated by two intracellular enzymes, 11β-hydroxysteroid

dehydrogenase 1 and 2 (11β-HSD1 and 11β-HSD2), which regulate the

interconversion of cortisol and its biologically inert metabolite,

cortisone. 11β-HSD1 acts as a reductase and thus regenerates bioactive

cortisol from inactive cortisone and increases the local cortisol

concentration. Conversely, 11β-HSD2 catalyzes the conversion of

cortisol to cortisone and thus reduces the availability of cortisol within

the cells. These two enzymes are expressed in a highly tissue-specific

manner. 11β−HSD1 is particularly prevalent in GC-responsive metabolic

tissues such as the liver and central nervous system,10,11 while 11β-HSD2

is predominantly located within the kidney and protects high-affinity

mineralocorticoid receptors from cortisol.10,12 The second mechanism is

the multidrug-resistant drug (mdr) transporter protein, P-glycoprotein,

which is also expressed in a highly tissue-specific manner and exports

cortisol from cells, thus reducing the intracellular concentration of the

steroid. The tissue-specific patterns of expression of 11β-HSD1, 

11β-HSD2 and P-glycoprotein thus provide effective mechanisms for

local regulation of the access of GCs to their receptors. 

Mechanism of Glucocorticoid Action
GCs act mainly via intracellular receptors, of which there are two main

types: the mineralocorticoid receptor (MR) and the GC receptor (GR).

These receptors mostly act as transcription factors, regulating the

expression of specific target genes. The number of target genes is

large—possibly as high as 1 % of the genome. MR is a high-affinity

receptor that cannot distinguish cortisol from the mineralocorticoid

aldosterone. The MRs have a highly tissue-specific pattern of

expression, and in tissues classically associated with aldosterone

actions (e.g. kidney) are protected from cortisol by 11β−HSD2. By

contrast, the GR is a low-affinity receptor with a high specificity for GCs.

It is widely distributed in the body. In many tissues, particularly those

associated with metabolism (e.g. liver), access of cortisol is facilitated

by 11β-HSD1.

Figure 1: Mechanism of Glucocorticoid Action 

Cortisol binding globulin (CBG) limits access of the steroid to intracellular glucocorticoid
receptors (GR). Both human leukocyte elastase (HLE) and cortisol binding globulin receptors
(CBG-R) can increase cortisol delivery into the cell. Intracellular concentrations of cortisol are
further influenced by the enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD), which can
increase (type 1) or decrease (type 2) cortisol levels. Cortisol binds to GR causing dissociation
from heat shock proteins (HSPs) and subsequent translocation to the nucleus. Cortisol bound
GR influences gene transcription either via an interaction between GR homodimers and
glucocorticoid response elements (GREs) within genes (transactivation) or via the binding of GR
monomers to relevant transcription factors (transrepression).

Cortisol
Capillary

Extracellular
space

Cytoplasm

Nucleus

CBG

O

O

HO

OH

OH

O

O

HO

OH

OH

O

O

HO

OH

OH

O

O

HO

OH

OH

O

O

H

H H

O 

OH

OH

O

O

HO

OH

OH

O

O

HO

OH

OH
O

O

HO

OH

OH

O

O

HO

OH

OH

O

O

HO

OH

OH

HLE

11 -HSD2

11 -HSD1

CBG-R

Cortisone

Transactivation Transrepression

GR HSP

GR GR

GRE GR

p65

John_RL_US_2011  28/07/2011  11:38  Page 66



An Overview of the Role of Glucocorticoids in the Pathophysiology of Endocrine Disorders 

U S  E N D O C R I N O L O G Y 67

GRs are cytoplasmic receptors that, in the absence of ligand, exist in

a complex with accessory proteins, such as heat shock proteins,

which act as chaperones to retain the GR within the cytoplasm.13

Binding of cortisol to the ligand-binding domain within the C-terminal

of GR14 induces a conformational change that promotes the

dissociation of the heat shock proteins, exposure of the nuclear

localisation signal, and translocation of the ligand–receptor complex

to the nucleus via an importin-mediated mechanism.15 Ligand-bound

GR uses two principal mechanisms to influence transcription of

specific target genes: transactivation and transrepression.

Transactivation requires homodimerisation of GR subunits and

interaction of the GR DNA-binding domain with conserved GC

response elements within the promoter region of responsive genes,16

a process facilitated by the recruitment of transcriptionally active

proteins.14 Interestingly, it appears that small changes in the DNA

recognition sites for GR can subtly alter GR transcriptional activity,

suggesting that there may be gene-specific GR effects within tissues.17

GR-induced transrepression occurs principally via a mechanism

independent of DNA binding,18 with GR monomers specifically binding

to, and interfering with, the actions of transcription factors such as

nuclear factor kappa B (NF-κB) or activating protein-1 (AP-1).19 For

example, the ability of the NF-κB p65 subunit to induce expression of

pro-inflammatory mediators is suppressed by binding of GR.20 These

differences are highly cell-specific and can determine GC responses,

with specific genes demonstrating activation or repression depending

on circumstances.

In addition to influencing gene transcription directly, GCs may also act

via non-genomic mechanisms.21,22 For example, GCs promote the

cellular exportation of the anti-inflammatory protein annexin 1 from

pituitary folliculostellate cells,23,24 predominantly through a non-genomic

mechanism.24 Croxtall and colleagues demonstrated that this action

involves the rapid release of Src kinase from cytoplasmic GR

heterocomplexes and subsequent inhibition of arachidonic acid

release.25 It is also possible that some non-genomic actions are

associated with activation of a membrane-bound GR. These receptors

are present in small numbers per cell, but are actively upregulated after

immunostimulation. It has been suggested that overstimulation of the

immune system would lead to upregulation of membrane-bound GR,

which would act in a feedback manner to reduce the excessive immune

reaction.26 The non-genomic mechanisms of GC action remain poorly

understood; therefore, further studies are warranted, particularly since

manipulation of these events may prove therapeutically useful.

Glucocorticoids and Human Disease
The clinical features associated with conditions of severe GC excess

(Cushing’s syndrome) and deficiency (Addison’s disease) are well

established, but these conditions are relatively rare. However,

considerable evidence points to a role for GCs in the pathophysiology

of numerous other endocrine-related disorders such as type 2

diabetes, dyslipidemia, and metabolic bone disease. Prolonged

increases in physiological GC production are most likely to be the result

of exposure to chronic stress. Alternatively, alterations in the local

intracellular mechanisms that regulate the access of GCs to their

receptors may cause local disturbances in GC homeostasis that

influence disease processes.

Acute stress is an allostatic process that aims to restore homeostasis

via adaptation, using mediators from numerous systems including the

HPA axis. Chronic stress is likely to be associated with allostatic

overload, where adaptive processes are used in a sustained manner. It

is this prolonged inappropriate use of adaptive physiological processes

that can result in dysfunction or disease. For example, increased food

intake and fat deposition can be seen as an allostatic response to

ensure there is sufficient metabolic resource to maintain homeostatic

processes, whereas in allostatic overload, this might result in abdominal

obesity. Prolonged increases in cortisol due to exposure to chronic

stress are likely to exact an allostatic load, with increased wear and tear

apparent in certain GC-sensitive tissues, whereas decreased function

will be apparent in other tissues owing to prolonged inhibitory effects of

GCs or redistribution of metabolic resource to physiologic systems

involved in restoring homeostasis. However, it should be noted that

tissue-specific alterations in GC concentrations without corresponding

increases in circulating GC levels can also influence disease processes.

It is interesting to note that the high circulating levels of GCs caused by

Cushing’s syndrome are associated with a number of negative

metabolic outcomes,10,27 whereas near normal serum GC levels are

usually found in patients with the more prevalent metabolic syndrome.28

It has been suggested that an alteration in tissue sensitivity to GCs

underlines the metabolic syndrome, specifically an alteration in the

expression of 11β-HSD1. Numerous animal studies have demonstrated

that 11β-HSD1 expression within metabolic tissues (e.g. adipose tissue,

liver) is correlated with an adverse metabolic outcome,29–31 and

metabolic disease within humans is commonly associated with elevated

11β-HSD1 expression/activity.32,33 Therefore, tissue-specific alterations 

in 11β-HSD1 expression coupled with increased intracellular GC

concentrations and subsequent GR activation may be a common feature

of metabolic disease. It has also been demonstrated that there are a

number of polymorphisms within the GC receptor gene itself that

influence GC sensitivity.34–36 Several of these GC receptor variants are

associated with hypersensitivity to GCs37–39 and therefore might

predispose an individual to negative health outcomes associated with

GC overexposure.

The developing organism is particularly sensitive to GCs, and

unwanted increases in fetal GR activation due to maternal stress or

synthetic GC administration (often used in peri-natal medicine to

mature the lung in conditions of pre-term birth) have the potential 

to induce programming effects on multiple body systems. Studies

performed on laboratory animals have shown that exposure of the

developing fetus or neonate to supraphysiologic GC levels or synthetic

GCs results in irreversible morphologic and physiologic changes in the

organism, which predispose it in adulthood to diseases that are

endemic in the developed world, such as type 2 diabetes,

cardiovascular disease, depression and other mental health disorders.

More limited data from clinical studies support these conclusions. The

maternal–fetal unit is designed to prevent excessive fetal exposure to

GCs, with placental 11β-HSD-2 acting as a barrier to the passage of

maternal GCs.40–42 However, this mechanism may become saturated if

endogenous GC levels rise excessively, or can be ineffective, as is the

case with synthetic GCs. A key feature of GC programming in early life

is prolonged, tissue-specific change in the expression of GR. Reduced

GR expression within the HPA axis leads to impairment of GC negative
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feedback in adulthood, leading to raised GC levels and exaggerated

HPA responses to stress. Conversely, GR expression in the liver is

increased, thus predisposing the individual to hyperglycemia. 

Glucocorticoids and Endocrine-related Disorders
This section deals with a number of endocrine-related disorders that are

associated with aberrant GC levels and in terms of pathophysiology may

be linked with chronic tissue-specific alterations in GC actions.

Glucocorticoids and Hyperglycemia/Type 2 Diabetes 
Patients with Cushing’s syndrome or on long-term GC therapy

classically present with hyperglycemia43,44 and symptoms of type 2

diabetes43—in this case termed steroid diabetes. It is important to note

that the development of type 2 diabetes is usually multifactorial, but

this article will discuss steroid diabetes induced by increased GC levels.

GCs act within the liver to upregulate the rate-limiting enzyme for

gluconeogenesis, phosphoenol-pyruvate carboxykinase (PEPCK),

providing a mechanism to explain GC-induced hyperglycemia. Insulin

resistance is the major biological risk factor for type 2 diabetes,45 and is

associated with both a reduced secretion of insulin by the endocrine

pancreas and a reduction in insulin sensitivity within peripheral tissues.

GCs decrease insulin secretion46 and also act on multiple targets to

influence insulin sensitivity, downregulating components of insulin

signalling such as insulin receptor substrate proteins 1 and 2,47

phosphoinositide 3 kinase activity,48 and Akt phosphorylation.49 In

addition, there is a strong positive correlation between GR expression

levels and the degree of insulin resistance.50 The link between

hyperglycemia/diabetes and GCs is further strengthened by studies

focused on GC pre-receptor metabolism. 11β-HSD-1 overexpression in

mice, which increases local GC concentrations in specific target

tissues, is associated with modest insulin resistance,51 whereas 

11β-HSD-1 knockout mice show a reduced ability to regenerate

intracellular GCs, improved insulin sensitivity,52,53 impaired induction of

PEPCK, a reduced hyperglycaemic response to stress,29 and an

improvement in several aspects of GC-induced diabetes.54 In humans,

increased HPA activity is associated with type 2 diabetes,55–57 with high

circulating cortisol levels positively correlated with more severe

complications from type 2 diabetes.58

Glucocorticoids and Dyslipidemia/Obesity
GCs are important physiological regulators of energy balance. It is

therefore not surprising that the development of metabolic pathologies

such as obesity has been strongly associated with dysfunctional GR

signalling. Cushing’s patients present with centripetal obesity, which is

directly linked to excessive GC action.59 Adipocytes in the abdominal fat

pads are more GR-rich than peripheral adipocytes and thus more

sensitive to GCs.60 Within central fat, GCs increase pre-adipocyte

differentiation and promote the pro-lipogenic pathways, thereby

increasing cellular hypertrophy.61,62 In non-cushingoid patients the

development of obesity is not necessarily associated with increased

circulating levels of GCs;10 however, in some cases at least, there is

evidence of altered tissue sensitivity to GCs owing to tissue-specific

upregulation of 11β-HSD-1 activity.63,64 There is evidence that 11β-HSD-1

activity is impaired in the liver but enhanced in adipose tissue in obese

human patients.33,65 Furthermore, the adverse metabolic complications

of obesity in mice are prevented by 11β-HSD-1 gene deletion,66 whereas

overexpression of the enzyme in adipose tissue results in metabolic

abnormalities.67 Studies on obese and lean human individuals have

demonstrated increased adipose tissue 11β-HSD-1 expression in obese

subjects68 and a direct association between 11β-HSD-1 levels and

metabolic abnormalities in obese women.69 However, tissue-specific

overexpression of 11β-HSD-1 in the liver is associated with numerous

metabolic alterations but not with changes in fat depot mass.51

Furthermore, other authors have failed to find an association between

obesity and 11β-HSD-1 activity in adipose tissue.70 Thus, while there is

evidence to link tissue-specific alterations in GC bioavailability with the

metabolic abnormalities associated with the development of obesity,

further studies are necessary to understand fully the role of GCs.

Obesity is associated with an increased risk of coronary heart disease

due partly to impaired trapping and breakdown of fatty acids by

adipocytes, which facilitates atherogenic dyslipidemia and is

associated with low levels of high-density lipoprotein cholesterol,

(HDL-C), elevated triglycerides and increased low-density lipoproteins

(LDL). Synthetic GR agonists increase serum triglyceride levels and

cause accumulation of hepatic lipid droplets in vivo, whereas

disruption of GR action specifically decreases serum triglyceride in a

mouse model of fatty liver.71 These GC-mediated effects are most likely

due to a decrease in β-oxidation of fatty acids and increased hepatic

uptake and storage of fatty acids as triglyceride. Recent studies

indicate that GR activation influences the expression of multiple genes

directly involved in fatty acid and triglyceride metabolism that may

contribute to systemic dyslipidemia. Enhanced GR activity is also

associated with decreased pancreatic lipase activity and fatty acid 

β-oxidation, profound inhibition of adipose tissue lipoprotein lipase

(which would normally act to increase uptake of triglyceride-derived

fatty acids) and increased liver cholesterol.71–73

Glucocorticoids and Depression
Depression is a complex illness characterised by a spectrum of clinical

symptoms including low mood, alterations in appetite and weight,

psychomotor agitation or retardation, sleep disruption, and suicidal

ideation. The development of the disease is influenced by genetic and

psychosocial factors as well as biological disturbances.74,75 There is

undoubtedly a very strong correlation between disturbances in HPA

function levels and the development of depression. Over 50 % of

Cushing’s patients present with depressive symptoms,76 and a similar

percentage of depressed patients present with hypercortisolemia.77

Onset of depression is correlated with stressful life events associated

with prolonged elevations in circulating GCs, such as divorce or

unemployment.78 Patients with major depression have been shown to

exhibit increased concentrations of cortisol in the plasma, urine and

cerebrospinal fluid,79,80 exaggerated cortisol responses to exogenous

ACTH,81 and an enlargement of both the pituitary and the adrenal

glands.82 In addition, a multitude of studies have demonstrated that 

GC-mediated feedback inhibition of the HPA axis is impaired in

depression; thus, unlike normal patients, approximately 50 % 

of depressed patients fail to respond to synthetic GCs with a reduction in

serum cortisol.83 In addition, many effective antidepressant treatments

have been shown to modulate cortisol secretion.84 Indeed, the GR is now

an important target for novel antidepressants, and some compounds that

specifically reduce the effects of cortisol have produced successful
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results in clinical trials.85 Depression is associated with structural

abnormalities in a number of cortico-limbic structures that play

important roles in cognition and emotional processing, such as 

the hippocampus, amygdala, and prefrontal cortex.86,87 Each of the

aforementioned brain regions is rich in GR,88–90 and increases in salivary

cortisol induced by acute stress are associated with decreased activity

within the hippocampus and amygdala.91 Interestingly, volumetric

reductions in the hippocampus are observed in Cushing’s patients, and

these reductions are partially reversed if the hypercortisolemia 

is corrected.91–94

While these clinical data are suggestive of a link between

hypercortisolemia and depression, they do not demonstrate true

causation. Animal models have attempted to demonstrate a direct link

between high circulating GC levels and depressive-like symptoms.

However, there is some debate as to whether animals can be classified

as depressed and whether the tests used to assess the disease in

animals can truly be correlated with clinical symptoms of depression,

which are subjective and highly variable. Generally, a good animal model

of depression will demonstrate some of the behavioral and

neurochemical changes associated with the disease as well as

responding to well-established antidepressant treatments. In addition,

the ability to examine the etiology of depressive illness is another

favorable asset for any animal model.95

Glucocorticoids and Osteoporosis
GC treatment is associated with rapid bone loss, and fractures are a

common side effect of long-term GC therapy.96 Bone remodelling is

dependent on the absorption of old bone matrix by osteoclasts, followed

by the generation of new bone matrix by osteoblasts that subsequently

enter the resorptive lacuna. GCs interfere with bone matrix formation

via induction of osteoblast apoptosis via activation of caspase-3, in

addition to decreasing the number of osteoblast precursor cells

available for differentiation.97 Chronic GC treatment induces the

expression of macrophage colony-stimulating factor (M-CSF) and

receptor activator of NF-κB ligand (RANKL), both of which are necessary

for osteoclast development. GCs also increase osteoclast maturation

and survival, which is classically associated with increased bone

resorption and rapid loss of trabecular bone.98,99 However, recent studies

suggest that osteoclasts induce a more complex effect on bone

remodelling. Osteoclasts act to resorb old bone, an action that requires

cytoskeletal organisation. As osteoclasts absorb the old bone matrix,

they release factors that promote the movement of osteoblasts into the

resorptive lacuna, which then act to synthesise new bone. Long-term GC

therapy suppresses specific osteoclast functions related to cytoskeletal

organisation and recruitment of osteoblasts, and therefore greatly

reduces new bone formation.100

Future Perspectives
GCs are predominantly used as anti-inflammatory and immunosuppressive

agents. Despite the undoubted clinical benefit obtained from the use of

these drugs, the side-effect profile associated with their use remains a

huge problem.43 Anti-inflammatory and immunosuppressive actions of

these drugs predominantly feature GC-mediated transrepression, whereas

the side effects often involve transactivation. Selective GR agonists with a

pharmacologic action mostly based on transrepression with little effect on

activation could retain the desirable clinical effects of these drugs while

considerably reducing side effects.43 Animal models demonstrating 

tissue-specific knockout or overexpression of GC targets will also help

provide a more accurate picture of GC action in vivo.

Antistress gene therapy is also a potential tool to protect against tissue

impairment due to prolonged elevations in circulating GCs. Dumas and

colleagues101 have recently demonstrated that tissue-specific expression

of 11-β-HSD-2 within the hippocampus offsets neurophysiologic

disruptions induced by chronically increased GC levels. Thus, a better

understanding of tissue-specific GC physiology will allow us to develop

more sensitive GC-based therapies and generate treatments aimed at

improving outcomes in diseases/disorders associated with chronically

increased GC levels. n
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