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Type 1 diabetes has become one of the most studied polygenic

disorders. It effects over 1.4 million people in the US, with a rising

incidence in many western nations.1,2 It is clear that there is a strong

hereditary component in the development of disease, with siblings at

higher risk than offspring and both at higher risk than the general

population. It is also clear that autoimmunity plays a large role in disease

pathogenesis. Development is insidious and chronic, but the initial

presentation is often acute (hyperglycemia, ketoacidosis, and cerebral

edema) and can be deadly as it is often unexpected.3

In the last two decades novel technologies have been developed to

study the genetics, biochemistry, and molecular pathology of type 1

diabetes. These, in turn, have allowed for early recognition of disease, as

well as the potential for prevention trials and early insulin treatment. In

this article we will highlight the prediction of type 1 diabetes risk and

developing immunotherapeutic concepts.

Immunology and Pathophysiology of 
Type 1 Diabetes 
An overwhelming amount of evidence in the last several decades points

to type 1 diabetes being an autoimmune, specifically T-cell-mediated,

disease. Through study of multiple animal models, including the non-

obese diabetic (NOD) mouse (which has many similarities to human type

1 diabetes), the pathogenesis of autoimmune beta-cell destruction is

becoming clearer. Central to T-cell response, including autoimmune

responses, are components of the trimolecular complex. For CD4-

positive T cells this complex consists of the T-cell receptor (TCR), an

antigenic peptide, and a human leukocyte antigen (HLA) molecule on

antigen-presenting cells (APCs) (e.g. the NOD mouse I-Ag7, homologous

to HLA class II DQ of humans). 

Figure 1 illustrates the trimolecular complex, which can be likened to a

hotdog (the peptide), bun (class II or class I molecules of the major

histocompatability complex or MHC), and barbecue instruments (the

TCR). The peptide sequence being presented to the TCR sits in the

groove of class II or class I molecules on the surface of an APC. The TCR

is then able to recognize it, bind to it (with varying affinity dependent on

molecular shape and charge), and mount an immune response. The TCR

is crucial for T-cell selection in the thymus as well as immune targeting

of peptides by mature T-lymphocytes. The receptor structure includes

variable alpha and beta chains, both with germline-encoded V and J

sequences. These segment sequences are ‘randomly’ combined to form

literally billions of different TCRs that recognize specific antigenic

sequences.4,5 When an antigenic peptide is presented by thymic
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epithelium (via major histocompatibility [MHC] class I and II molecules),

the TCR binds to it. In the absence of any TCR engagement in the

thymus, T cells will die by ‘neglect.’ If recognition in the developing

thymus is modest (due to weak binding related to variations in the

presenting molecule, the antigenic peptide, and the TCR binding

sequence), T-cells fail to be ‘deleted.’ They then leave the thymus and

enter the peripheral circulation. A subset of autoreactive T-cells fail to be

deleted in the thymus and can react with self-antigens in the periphery.

Self-antigen reactivity can occur by several mechanisms, including

modification of self-molecules in the periphery but not the thymus (e.g.

citrinylated peptides), failure of the thymus to express certain peripheral

antigens in concentrations that are sufficient to delete all self-reactive 

T cells, and innate immune activation of self-reactive T-cells in the

periphery. These peripherally activated, autoreactive T cells can then

trigger a cascade of events leading to a large-scale immune response

that ultimately ends in tissue destruction.

Insulin peptide sequences are now thought to be central to the

development of autoimmunity in the NOD mouse.6–14 The insulin B:9–23

peptide sequence may be of particular importance in loss of tolerance

leading to diabetes.9,14 In the mouse there are two insulin genes (insulin

1 and 2) that form nearly identical preproinsulin molecules. Insulin 1 and

2 are both expressed in pancreatic islet beta cells, but only insulin 2 is

expressed in the thymus. Ideally, insulin-reactive T cells would be

deleted in the thymus. Knocking out insulin 2 accelerates the

development of type 1 diabetes, while knocking out insulin 1 prevents

the majority of type 1 diabetes development.15 Thus, it is likely that

attenuated expression of insulin 2 in the thymus of knockout mice

enhances autoimmunity by decreasing negative selection in the thymus,

while eliminating Insulin 1 in the periphery may remove an important

islet target peptide. Of note, knocking out both insulin genes and

providing mice with a single mutated insulin gene (replacing beta-chain

16 tyrosine with alanine) prevents all diabetes of NOD mice.13,16–18

A specific V alpha segment of the TCR, TRAV5D-4*04, appears to play a

unique role in targeting the B:9–23 sequence of the insulin molecule.

Experiments involving variation of this specific alpha chain sequence

but conservation of other elements in the beta and alpha construct of

the TCR have led to the hypothesis that this V-alpha segment is

important in enhancing diabetes susceptibility.19–21 The final component

in the trimolecular complex in the NOD mouse is I-Ag7, homologous to

the DQ8 HLA class II molecule in humans. HLA class II molecules play a

major role in the development of autoimmunity (see below). Human

DR3–DQ2 and DR4–DQ8 haplotypes, which are closely associated with

type 1 diabetes risk, have similar polymorphisms to I-Ag7.22,23 These

polymorphisms alter the peptides bound and presented to TCRs, and

thus alter self-antigen recognition as described above.

Although in the NOD mouse model there are convincing data

supporting the hypothesis that insulin is the primary autoantigen,

studies in humans are not definitive. In particular, although insulin

autoimmunity is prominent and polymorphisms of the insulin gene

influence diabetes risk, there are multiple islet autoantigens targeted in

humans. Autoantibodies to IA-2, glutamic acid decarboxylase (GAD),

and the newly discovered autoantigen ZnT8 (discussed in more detail

below) are important markers of disease risk. Furthermore, loss of

tolerance and development of autoimmunity clearly depend on more

than the trimolecular complex recognition of insulin. Environmental

factors and polymorphisms of non-MHC genes involving maintenance

of tolerance can play a distinct role in disease development (see

below). Inability to maintain tolerance is a key aspect of the NOD mouse

model and humans.

Disease Prediction in Type 1 Diabetes
Genetic Markers
Approximately one in 300 individuals in the general population in the US

develop type 1 diabetes, while approximately one in 20 first-degree

relatives of patients with type 1 diabetes (offspring or sibling) develop

diabetes.24,25 More than 60% of monozygotic twins with a twin-mate

having type 1 diabetes will develop diabetes and more than 70%

develop anti-islet antibodies.26 Dizygotic twin risk is much lower and

similar to that of siblings (again, one in 20 or 5%).27

Environmental factors play a role in the development of type 1 diabetes.

This is evident by the lack of 100% concordance in twin studies, the

increasing incidence of type 1 diabetes worldwide (at a rate too fast 

to be explained by genetic changes alone), potential disease links to

medications, temporal associations with environmental factors (e.g. diet

and viral infections), and variability of disease penetrance in mouse

models with different environmental exposures.28–34 One recent study

followed monozygotic and dizygotic twins for 10 years and reported that

88% of phenotypic variance was due to genetics, while 12% could be

attributed to the environment.35 More research is warranted in this field,

and studies such as The Environmental Determinates of Diabetes in the

Young (TEDDY) are under way to help explore these issues. 

Regarding genetic susceptibility to diabetes, there are well-known

single-gene causes of autoimmune diabetes. They include autoimmune

polyendocrine syndrome type 1 (APS1) caused by mutations in the 

AIRE gene and immunodysregulation, polyendocrinopathy, enteropathy,

X-linked (IPEX) syndrome caused by mutations in the FOXP3 gene. Both

of these syndromes are well studied and have contributed to current

understanding of diabetes pathophysiology. The FOXP3 gene in

particular is essential for the development of regulatory T cells, and

Figure 1: The Trimolecular Complex
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MHC = major histocompatibility complex; TCR = T-cell receptor.
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approximately 80% of children with FOXP3 mutations develop type 1

diabetes with onset as early as the first days of life.36 The AIRE gene

controls expression of peripheral antigens such as insulin in the thymus

and it is hypothesized that lack of multiple peripheral antigens in the

thymus of individuals with mutations of the AIRE gene contribute to their

widespread autoimmunity.37 Other diseases contributing to the

knowledge of diabetes pathogenesis include autoimmune diseases

known to be associated with type 1 diabetes, e.g. Addison’s disease,

celiac disease, pernicious anemia, and thyroiditis.38 These polygenic

conditions reflect the immunogenetics behind common forms of

autoimmune diabetes. Approximately one-third of children with new-

onset type 1 diabetes have associated organ-specific autoimmunity (e.g.

thyroid peroxidase, transglutaminase, 21-hydroxylase autoantibodies).

The MHC class II region on chromosome 6 has long been linked to diabetes

susceptibility. Effects of high-risk alleles in this region are consistent across

different ethnicities despite large differences in allele frequencies.39 There

is also significant homology between species, with defined genes and

regions of risk in man, NOD mice, and susceptible rat strains.23,40–43 

The extremely high-risk genotype DR3/4–DQ2/DQ8 (DR3–DQA1*

501–DQB1*201; DR4–DQA1*301–DQB1*302) occurs in 2.4% of Denver

newborns, and 30–40% of all type 1 diabetes patients carry this

heterozygous genotype. Children with this genotype have an absolute

risk of one in 15 versus one in 300 in the general population.24,25 In long-

term follow-up studies of 30,000 newborns (selected for either high-

risk HLA or a first-degree relative with type 1 diabetes), we find that

41% of DR3/4 siblings, as well as 16% of offspring of type 1 diabetes

patients, expressed islet autoantibodies by seven years of age.

Furthermore, in siblings identical by descent for both DR3/4

haplotypes, 63% had positive autoantibodies by seven years of age

and 85% were positive by 15 years of age (see Figure 2). This is in

contrast to only 20% developing autoantibodies in DR3/4 siblings

sharing no or one haplotype identical by descent.44 Within the general

population, the DR3/4 genotype combined with analysis of DP alleles

(absence of protective DPB1*0402) and DR4 (absence of DRB1*0403)

confers a 20% risk of developing islet autoimmunity.45

While 2.4% of the population of Denver carry the DR3/4 heterozygous

genotype, over 30% of patients with diabetes have this genotype.27

Interestingly, either DR3 or DR4 haplotypes in homozygous form

(DR3/DR3 or DR4/DR4) are lower-risk compared with the DR3/4 genotype.

The mechanism for the increased heterozygote risk is not completely

delineated, but it has been hypothesized that the DQA1*0501 allele of

DR3 haplotype and the DQB1*0302 allele of DR4 haplotype combine,

creating a ‘chimeric’ molecule (DQA1*0501, DQB1*0302) for antigen

presentation that increases the risk of diabetes.40 There are also MHC

class II alleles that are protective (see Table 1): DQB1*0602 is present in

20% of the population but only 1% of children with type 1 diabetes.

Other protective alleles include DRB1*0403 (even when DQB1*0302 is

present) and DRB1*1401.40,46 Even within DRB1*04 alleles there are

variations conferring greater and lesser risk.47,48

MHC class I loci (HLA-A, B, and C) play a lesser role in diabetes

susceptibility. A24 is associated with a younger age at presentation and

A30 is associated with higher risk; A1 is lower-risk than other HLA-A

alleles when associated with the DR3–B8 haplotype.49 HLA-B18, B39, B44,

and B8 are all associated as well, with HLA-B39 conferring higher risk in

three different populations and HLA-B8 being lower-risk when linked with

the DR3 allele in the well-known extended haplotype with DR3, HLA-B8,

and HLA-A1.50,51 HLA-C3, C8, and C16 have been reported to increase

susceptibility.51 Extensive long-range linkage dysequilibrium between

alleles of genes of the MHC make it difficult to pinpoint specific genes

contributing to risk. One of the most common extended haplotypes

consists of DR3–B8–A1 alleles, termed the 8.1 haplotype (containing

DRB1*0303–DQA1*0501–DQB1*0201–HLA-B8–HLA-A1). This is the most

common extended haplotype in the Caucasian population, with over 99%

identity across the MHC by single nucleotide polymorphism (SNP)

analysis. Interestingly, it is increased in type 1 diabetes individuals (18%,

versus 9% of Caucasian controls)52 due presumably to the DR3 and DQ2

alleles and not as much to the HLA-B8 and HLA-A1 portion of the

haplotype. The DR3–B8–A1 haplotype confers less risk than other 

DR3 haplotypes. Higher risk was found in the less common DR3–B18–A30

haplotype (Basque haplotype) as well as other non-B8 DR3-positive

individuals.53,54 This would point to susceptibility loci telomeric to class II

alleles. For several years, interest has turned to regions outside the MHC

region for susceptibility to type 1 diabetes. Because there is a known

correlation between development of diabetes and anti-insulin antibodies

Table 1: DRB1*04 Subtypes Conferring Varying Degrees of
Risk in Patients with Diabetes

HLA-DRB1*04 HLA-DQB1 Odds Ratio (OR)
0405 0302 11.4

0401 0302 8.4

0402 0302 3.6

0404 0302 1.6

0403 0302 0.27

0401 0301 0.35

Note the extreme risk of DRB1*0405 and DRB1*0401 allele and the protective nature of
DRB1*0403.40

DR3/4 (a high-risk genotype in type 1 diabetes) confers extreme genetic risk for siblings of
patients with type 1 diabetes if they have inherited both HLA-DR3 and DR4 identical by descent.
By contrast, the DR3/4 genotype of siblings confers much lower risk if either the DR3 or the
DR4 haplotype was not the same haplotype found in the proband sibling.40,44

HR = hazard ratio; MHC = major histocompatibility complex; CI = confidence interval.
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Figure 2: Genetic Risk of Siblings of Patents with 
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(see below), the insulin gene has been of particular interest. There is a

variable number tandem repeat sequence (VNTR) at the 5´ end of the

insulin gene that has been known for over two decades to be associated

with risk in type 1 diabetes. Longer repeats are protective and are

associated with increased insulin expression in the thymus.55,56

Differences in expression of the insulin 2 versus insulin 1 gene in NOD

mouse thymus presumably relate to the same mechanism (see above).

PTPN22 is located on 1p13 and encodes for protein tyrosine

phosphatase non-receptor type 22 (PTPN22)/lymphoid phosphatase

(LyP). Position 1858 contains a non-synonymous SNP that changes

arginine to tryptophan at position 620. This polymorphism results in a

gain of function that increases inhibition of TCR signaling. Many groups

have confirmed its presence in type 1 diabetes patients in many

different populations, with an odds ratio of 3.4 in its homozygous

form.57–59 It is hypothesized that this SNP decreases T-cell signaling,

thereby decreasing negative selection in the thymus. This risk allele 

is therefore associated with many autoimmune diseases.60 Genome-

wide association studies have also been performed on type 1 diabetes

patients in hopes of finding other loci of interest. High-density SNP

analysis (over 300,000 per individual) and follow-up meta-analyses have

added to the list of regions involved in type 1 diabetes. Several signals

of interest include confirmation of the MHC, PTPN22, cytotoxic 

T-lymphocyte antigen 4 (CTLA4), and insulin gene loci. Other genes of

interest include those encoding CD25/interleukin-2 receptor alpha

(IL2RA) and interferon-induced helicase C domain-containing protein 1

(IFIH1); the strongest signal from the latter three genes was in

CD25/IL2RA, with more than one SNP associated with risk. CTLA4,

despite an odds ratio of 1.1–1.2, has been implicated in multiple studies

and is known to be strongly involved in T-cell signaling.61–67 More than 

40 loci are now firmly associated with risk of type 1 diabetes, with the

strongest signals by far associated with the MHC (see Figure 3).68

Serological Markers
Autoantibody development and insulitis are the end result of loss of

self-tolerance and a component of the heightened immune response

that results in destruction of beta cells in the pancreatic islets.

Numerous antibodies are generated from a very early age in type 1

diabetes-susceptible patients. The most important autoantibodies

include (in typical order of appearance chronologically) anti-insulin, anti-

GAD65, anti-IA-2, and anti-ZnT8 antibodies.69–71 Presence of multiple islet

autoantibodies is the most important predictor of progression to

disease in type 1 diabetes.72 Development of autoantibodies can begin

as early as four to 12 months of age, with earlier development

correlating with greater risk of progression to overt disease (type 1

diabetes).73 For some patients with pre-diabetes, autoantibodies do not

appear before 50 years of age. Insulin autoantibodies, often the first to

appear, can be a predictor of severity as their levels are inversely related

to age at disease onset.74 Furthermore, if two or more of the above

antibodies are elevated (with each assay set at positivity ≥99 percentile

of normal populations), both relatives and individuals in the general

population will ‘inevitably’ develop overt disease (>90%) versus

individuals with only one antibody (20%).44,75,76

In the DAISY Study, the development of autoantibodies in DR3/4 general

population individuals is influenced by DP alleles (see Figure 4). The rate

of progression to diabetes increases in direct proportion with

autoantibody positivity, with autoantibody development often preceding

disease onset.77 Individuals can express autoantibodies for decades

prior to hyperglycemia. Despite a percentage of false or transiently

positive individuals, people deemed ‘high-risk’ via genotyping can be

followed with a reasonable prediction of disease progression such that

prevention trials are under way.78 These individuals, found in studies

such as DAISY, can also then be followed with glucose tolerance testing

and glycated hemoglobin (HbA1c) to diagnose hyperglycemia early, and

often they can be started on insulin therapy without hospitalization or

the development of ketoacidosis.79,80

Disease Modification in Type 1 Diabetes 
For the last few decades standards of management for type 1 diabetes

have centered on glucose monitoring and insulin replacement therapy.

While the technology has greatly improved with regard to insulin pumps

and continuous glucose monitoring to simulate as best as possible

physiological pancreatic beta-cell function, it is by no means a perfect

Figure 3: Non-human Leukocyte Antigen Loci Found to
Have an Association with Diabetes
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solution to the disease. Currently, efforts are under way to prevent beta-

cell loss or replace lost cells via beta-cell regeneration or transplantation

of islets. Subjects who undergo islet cell transplant often initially develop

insulin independence and markedly improved glucose levels. However,

these benefits are short-lived with a significant number losing insulin

independence over long-term (two- and five-year) follow-up. There

remains some benefit with improved blood glucose control and prevention

of severe hypoglycemia, however.81 Toxicity of immunosuppressive

regimens and failure of islet grafts with time suggest that for most patients

complications of therapy outweigh the benefits, and for now islet

transplantation is still in development.82

It was reported more than 20 years ago that horse anti-thymocyte

globulin or cyclosporine therapy prolongs the honeymoon phase in new-

onset diabetic patients.83,84 Since the initial publications, many therapies

have been studied to modulate the immune system both generally as

well as through targeting specific antigens. General immunosupression is

a poor option for treatment and prevention of diabetes, given the very

high cost–benefit ratio. Trials using oral insulin (through the National

Institutes of Health [NIH] Diabetes Prevention Trial) to stimulate 

self-tolerance in the subgroup of individuals with high levels of anti-

insulin antibodies showed some promise only in individuals with high

levels of insulin autoantibodies by delaying the onset of diabetes. In

several well-powered studies, however, the onset of disease could not be

prevented overall.69,85–89 Other promising therapies include vaccination

with GAD65 (a known target of anti-islet antibodies) and monoclonal

antibody therapy with anti-CD3 and anti-CD20.89–91 Again, long-term arrest

of disease progression has not been found with these therapies. While

antigen-specific therapies are safer than broad immunomodulation,

there is less evidence for efficacy. Still, there is optimism and ongoing

research devoted to this area. Several phase III trials are either under way

or planned with goals to delay loss of beta cells after onset of

hyperglycemia or in autoantibody-positive high-risk individuals. In North

America, individuals can be screened for islet autoantibodies and

considered for participation in NIH-sponsored trials (either new onset or

pre-diabetic) by contacting Trialnet (1-800-HALT-DM1).

Conclusion
There has been great progress in understanding type 1 diabetes in the

last two decades. We can predict disease through genetic testing of

alleles of genes in the MHC region combined with analysis of islet 

autoantibodies and metabolic function. The realization that type 1

diabetes is an autoimmune disorder associated with a series of

additional autoimmune diseases, many with shared genetic loci 

(e.g. celiac disease, Addison’s disease, thyroid autoimmunity), has led

many centers to screen for these associated disorders. Current

knowledge has also led to progress in trials of preventive therapies

through manipulation of the immune response. It is hoped that in the

years to come diabetes will be a preventable disease and the results of

current phase III clinical trials will hopefully inform clinical care. n
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