
Cardiovascular disease (CVD) is the leading cause of mortality

worldwide, and an overwhelming body of clinical evidence has

demonstrated the efficacy of statin treatment in the prevention of 

this condition. Therapeutic goals in the prevention of CVD include

management of dyslipidemia and of its complications such as

hypertension and diabetes. Statins are the most widely used treatment

in the management of dyslipidemia and exert their therapeutic action

by competitively inhibiting 3-hydroxy-3-methylglutaryl coenzyme A

(HMG-CoA) reductase. Inhibition of this enzyme results in upregulation

of low-density lipoprotein (LDL) receptors and a reduction in the

plasma levels of LDL cholesterol (LDL-C), non high-density lipoprotein

cholesterol (non HDL-C), and apolipoprotein B.1 Results from a 

meta-analysis showed that statins reduce the five-year incidence 

of major coronary events, coronary revascularization, and stroke by

about a fifth for each mmol/l reduction in LDL-C.2

Despite the known efficacy of statins, high LDL-C remains

underdiagnosed and undertreated: it is estimated that 71 million 

US adults (≥20 years of age) have LDL-C levels greater than the 

National Cholesterol Education Program Adult Treatment Panel III

(NCEP ATP-III) goals.3 In the National Cholesterol Education Program

evaluation project utilizing novel E-technology (NEPTUNE) II survey, it

was found that patients with diabetes (55 %) and other coronary heart

disease (CHD) risk equivalents (40 %) were less likely to have achieved

their LDL-C targets than those with CHD (62 %).4 Therefore, the use 

of these drugs at conventional doses may be unsatisfactory for LDL-C

management in patients with diabetes, other CHD risk equivalents,

and CHD. For such patients, administration of statins at high doses, or

concomitant use of other agents for dyslipidemia may be considered.

However, such options may increase the risk of serious adverse 

drug reactions.5
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Adverse drug reactions are a significant burden in healthcare and are

associated with substantial morbidity, mortality and healthcare costs.6

Although the rate of adverse affects during statin monotherapy is

generally low, in rare cases (0.1–0.2 %), statins may cause myositis,7 and

in extremely rare cases, life-threatening rhabdomyolysis.7,8 Drug–drug

interactions (DDIs) that increase the serum concentration of statins can

increase the risk of these muscle-related adverse events.9 The aim of

this article is to discuss the patient populations who are most at risk 

of statin DDIs, and outline dyslipidemia treatment choices that may

reduce the risk of DDIs in these patients. 

Molecular Basis of Statin Drug–Drug Interactions
In order to understand the molecular basis of statin DDIs, it is

important to take into account the different pharmacokinetic

properties that underlie their routes of metabolism and elimination

(see Table 1).9,10 Statin DDIs are primarily caused by agents that inhibit

their metabolism and transport. The metabolism of drugs generally

occurs in two phases (see Figure 1). Phase I reactions involve

introduction of a functional group to decrease their lipophilicity. This

typically involves oxidation resulting in a variety of hydroxyl

metabolites. If the drug is sufficiently hydrophilic, it will be eliminated

from the body, if not, it will undergo Phase II reactions which involve

conjugation with another hydrophilic molecule, further increasing their

water solubility. Typical Phase II reactions include glucuronidation,

acetylation, methylation, or formation of sulfate, glutathione or glycine

conjugates.11 Of the enzymes involved in Phase I reactions, the

cytochrome P-450 (CYP) group is the most important. Within the CYP

system, CYP3A4 is the most prevalent isoenzyme and metabolizes

more than half of the drugs in current use.12

Each of the common Phase I isoenzymes, CYP2C9, 2C19, 2D6 and

3A4/5 interact differently with the different statins because of their

differing physiochemical properties. Lovastatin and simvastatin

undergo extensive first-pass metabolism via CYP3A4, with atorvastatin

being metabolized by CYP34A to a lesser extent. Fluvastatin is

metabolized via CYP2C9, with CYP3A4 and CYP2C8 contributing to a

lesser extent.1 More recently developed statins such as rosuvastatin,

and pitavastatin and older statins such as pravastatin, undergo minimal

Phase I metabolism and their plasma concentrations are not

significantly increased by CYP3A4 inhibitors.13

This predominant role of CYP in the metabolism of many statins

presents the potential for DDIs with CYP inhibitors, which can result in

marked alterations in concentrations of drugs within this class. When

lovastatin and simvastatin are used concurrently with a potent CYP3A4

inhibitor such as itraconazole, the statin serum concentration can be

increased 10- to 20-fold.14,15 A retrospective database study found that

patients who received statins with a concomitant CYP3A4 inhibitor 

had a six-fold increased rate of muscle-associated adverse reactions

including rhabdomyolysis.16

Atorvastatin is also metabolized by CYP3A4, but not as extensively 

as lovastatin and simvastatin. Accordingly, potent CYP3A4 inhibitors

tend to produce two- to four-fold increases in atorvastatin serum

concentrations.17 The relationship between altered plasma
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Table 1: Pharmacokinetic Properties of Statins 

                                                                    Atorvastatin        Fluvastatin XL     Lovastatin           Pitavastatin         Pravastatin          Rosuvastatin       Simvastatin
Fraction absorbed (%)                                      30                         98                         30                         75                          34                          50                         60–80

tmax (h)                                                               2–3                       4                           2–4                        1.2                         0.9–1.6                  3                           1.3–2.4

Cmax (ng/ml)                                                      27–66                   55                         10–20                    18.2                       45–55                    37                         10–34

Bioavailability (%)                                              12                         6                           5                           51                          18                          20                         5

Effect of food on bioavailability (%)                 13                         0                           50                         0                            30                          20                         0

Lipophilicity                                                       Yes                       Yes                       Yes                       Yes                        No                         No                         Yes

Transporter substrate                                      Yes                       Yes                       Yes                       Yes                        Yes                        Yes                       Yes

Protein binding (%)                                           >98                       >99                       >95                       >99                        43–55                    88                         94–98

Hepatic extraction (%)                                      >70                       >68                       >70                       Estimated >70      46–66                    63                         78–87

Systemic metabolites                                       Active                   Inactive                 Active                   Inactive                 Inactive                 Active (minor)       Active

Systemic clearance (ml/min)                            291.6                    4,433                     303–1,166             410                        945                        805                       525

Renal clearance (ml/min)                                 No                        No                         No                         No                         >400                     226                       No

t1/2 (h)                                                                15–30                   4.7                        2.9                        13                          1.3–2.8                  20.8                       2–3

Fecal excretion (%)                                           70                         90                         83                         78                          71                          90                         58

Urinary excretion (%)                                        2                           6                           10                         <4                          20                          10                         13

All based on a 40 mg oral dose, except fluvastatin XL (extended release, 80 mg) and pitavastatin 2 mg. Cmax = maximum concentration; h = hours; tmax = time to reach maximum concentration;
t1/2 = terminal elimination half-life. Source: Corsini, 2011.9

Figure 1: Phases of Drug Metabolism

3-Hydroxy-phenytoinPhenytoin 3-Hydroxy-phenytoin-glucuronides

CYP 2C9 UGT

Highly lipophilic Slightly water soluble Very water soluble

Example of drug metabolism using Phase 1 and phase reactions

Phase 1 reaction (introduction of 
a functional group)
– Oxidation
   • CYP450
– Reduction

Phase 2 reaction
– Conjugation reaction with 
   another molecule
   • Glucuronidation
   • Sulfate
   • Glutathione
   • Glycine
   • Acetylation
   • Methylation

CYP = cytochrome P-450; UGT = uridine 5’-diphospho-glucuronosyltransferase. Source: Ito MK,
presented at 2012 American Heart Association Scientific Sessions, Los Angeles, California, US.
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concentrations and adverse effects or toxicity may not be linear, and

therefore caution should be exercised in prescribing certain statins in

combination with CYP3A4 inhibitors.18 Even foodstuffs such as grapefruit

juice and fresh grapefruit can inhibit the metabolism of statins as a

result of selective downregulation of CYP3A4 in the small intestine.19,20

Regular consumption of grapefruit juice (200 ml once daily) can increase

simvastatin area under the curve (AUC) over three fold.21 Therefore,

grapefruit juice consumption is best avoided when taking a statin

metabolized by CYP3A4.22

Following reports of muscle-related side effects of statin therapy,

particularly simvastatin, the FDA underwent their own surveillance 

and a review of the Study of the effectiveness of additional reductions in

cholesterol and homocysteine (SEARCH) trial.23 As a result, they have

issued a number of safety announcements on potential DDIs, which

have included discontinuation of the 80 mg dose of simvastatin and

other dose restrictions when taken in combination with strong CYP

inhibitors.24–26 Lovastatin has also been given many dose restrictions by

the FDA.26 These are summarized in Table 2.

Of the statins that do not primarily depend on CYP3A4 for metabolic

clearance, rosuvastatin is primarily eliminated as the unchanged 

parent compound but has but has some dependence on CYP2C9 and

CYP2C19 for its metabolism.27,28 Pitavastatin is only minimally metabolized

by CYP2C9 and to a lesser extent CYP2C8 and is mainly metabolized by

glucuronidation. As a result, it does not interact with CYP3A4 inhibitors,

increasing the drug’s tolerability profile.9,29 A large post-marketing 

study conducted in more than 20,000 patients in Japan30 found that 

the rate of adverse drug reactions with pitavastatin treatment was 

6.1 %, around half that observed with atorvastatin and rosuvastatin (12.0

and 11.1 % respectively).9 These included increases in blood creatine

phosphokinase, alanine aminotransferase, aspartate aminotransferase

gamma-glutamyltransferase, and also myalgia.

One pharmacokinetic property shared by all statins is extensive first 

pass hepatic extraction. Access into the liver is an important 

step prior to metabolism and elimination of the statins. This is

accomplished by two primary mechanisms—active transport and

passive diffusion (see Figure 2). Organic anion transporting

polypeptides (OATPs) form a family of membrane influx transporter

proteins that actively transport all statins to some extent.31

Hydrophilic statins such as pravastatin and rosuvastatin are

transported from the portal circulation into the hepatocyte32 by

OATPs. OATP1B1 also appears to have a selective role in pitavastatin

transport33 Atorvastatin, fluvastatin, lovastatin, and simvastatin enter

hepatocytes mainly by passive diffusion; however, the acid forms of

these statins also utilize active transport mechanisms.34,35

Inhibition of hepatic uptake transporters and reduced transport activity

have the potential to cause significant DDIs.34 Cyclosporine inhibits

several influx and efflux transporters, including OATP1B3, OATP2B1, as

well as CYP3A436 and has been shown to increase plasma concentrations

of lovastatin.37 However cyclosporine has been shown to increase plasma

concentrations of statins that are not significantly metabolized by CYP3A4;

interactions between cyclosporine and rosuvastatin,38 and pitavastatin39

have been noted in clinical situations. Furthermore, genetic variability in

OATP-encoding genes can result in significant inter-individual differences

in pharmacokinetics. For example, a single nucleotide polymorphism in 
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Figure 2: Active and Passive Transport of Statins
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Table 2: New US Food and Drug Administration Labeling
Restrictions on Simvastatin and Lovastatin

New Simvastatin Label                         New Lovastatin Label
Contraindicated with simvastatin:           Contraindicated with lovastatin:

Itraconazole                                              Itraconazole

Ketoconazole                                            Ketoconazole

Posaconazole                                           Posaconazole

Erythromycin                                            Erythromycin

Clarithromycin                                          Clarithromycin

Telithromycin                                            Telithromycin

HIV protease inhibitors                             HIV protease inhibitors

Nefazodone                                              Boceprevir

Gemfibrozil                                               Telaprevir

Cyclosporine                                             Nefazodone

Danazol                                                     

                                                                 Avoid with lovastatin:

                                                                 Cyclosporine

                                                                 Gemfibrozil

Do not exceed 10 mg simvastatin           

daily with:                                                 

Verapamil

Diltiazem

Do not exceed 20 mg simvastatin           Do not exceed 20 mg lovastatin

daily with:                                                 daily with:

Amiodarone                                              Danazol

Amlodipine                                               Diltiazem

Ranolazine                                               Verapamil

                                                                Do not exceed 40 mg lovastatin 

                                                                 daily with:

                                                                 Amiodarone

Avoid large quantities of grapefruit        Avoid large quantities of grapefruit

juice (>1 quart daily)                                 juice (>1 quart daily)
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the SLCO1B1 gene may markedly increase plasma concentrations of

simvastatin acid and result in an increased risk of myopathy.36,40

The membrane protein P-glycoprotein (P-gp),13 an efflux protein located

in the gastrointestinal tract, placenta, kidneys, brain, and liver, is believed

to affect the bioavailability and elimination of statins, primarily in the acid

form, and may therefore play a role in DDIs.41–43 Studies of in vitro models

have found that atorvastatin, simvastatin, and lovastatin are substrates

for P-gp while pravastatin, fluvastatin and the acid form of pitavastatin do

not show significant inhibition of P-gp.41,44–46 Data from drug interaction

studies involving statins and digoxin have suggested the involvement 

of P-gp.47 Many drugs known to cause DDIs with statins are modulators of

P-gp, and include diltiazem, verapamil, itraconazole, ketoconazole, 

and cyclosporine, as well as St John's wort and grapefruit juice. However,

the role of P-gp in these specific DDIs is unclear.41 Multidrug resistance

associated proteins (MDR1 and MDP2) and breast cancer resistance protein

(BRCP) may also be involved in the efflux of statins.9

Impact of Drug–Drug Interactions on 
Statin Usage 
Many patients receiving statins are elderly, and/or have comorbid

conditions such as diabetes, hypertension, and CHD. Treatment 

of patients at high risk for CVD invariably involves the prescription of

multiple medications. As the clinical complexity of patients increases, 

so does the potential for DDIs. A high proportion of patients are 

co-prescribed a statin with potentially interacting drugs, and therefore

the impact of polypharmacy on the safety profile of statins may be 

not be fully recognized.48 It is also important to remember that

polypharmacy involves not only prescribed medications but also 

over-the-counter medications, including vitamins, minerals, herbal

remedies and foodstuffs such as grapefruit juice and fresh grapefruit. 

A recent study examined the concomitant exposure of patients 

to CYP3A4-metabolized statins and CYP3A4 inhibitors in the UK 

primary care population. In this analysis, which included a total of

364,574 patients, the majority (93 %) of the patients were prescribed
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Table 3: Clinically Significant Drug–Drug Interactions Involving Statins

Interacting Drug                                        Mechanism of Interaction                                                                                                                              Reference
Amiodarone                                                  Amiodarone is a moderate CYP3A4 and CYP2C9 inhibitor                                                                                     91

Azole Antifungals                                        Itraconazole, ketoconazole, posaconazole, and voriconazole are strong CYP3A4 inhibitors.                              14, 17, 91, 

Fluconazole, itraconazole, ketoconazole,   Voricazole is also a CYP2C19 and CYP2C9 inhibitor. Fluconazole is a moderate CYP3A4 and                            92

posaconazole, voriconazole                         potent CYP2C9 inhibitor

Bile Acid Sequestrants                              Decreased bioavailability of statins due to the drugs binding in the intestine                                                       13

Cholestyramine, colestipol                           

Calcium Channel Blockers                         Amlodipine is a CYP3A4 substrate. Diltiazem, and verapamil are CYP3A4 inhibitors. Diltiazem                           91

Amlodipine, diltiazem, verapamil                 also inhibits P-glycoprotein-mediated transporters. Amlodipine might inhibit transport proteins that 

                                                                      carry simvastatin into the liver for metabolism                                                                                                       

Colchicine                                                     Colchicine is a P-glycoprotein inhibitor and can itself cause myopathy                                                                 93

Cyclosporine                                                 Cyclosporine is a CYP3A4 inhibitor and also inhibits P-glycoprotein, OATP1B1, and other transporters.            91

                                                                      Cyclosporine itself has been associated with myopathy and glucuronidation                                                       

Danazol                                                         Danazol is a CYP3A4 inhibitor                                                                                                                                  91

Digoxin                                                          Atorvastatin and simvastatin inhibit P-glycoprotein                                                                                                47

Fibric Acid Derivatives                                 Gemfibrozil also inhibits hepatic glucuronidation of statins. Fenofibrate is a CYP2C9 inhibitor                            71, 75, 76, 91

Fusidic acid                                                   Cause is unclear: inhibition of CYP3A4 and inhibition of the glucuronidation pathway have been suggested        94, 95 

Glyburide                                                       Increased glyburide levels due to fluvastatin inhibition of CYP2C9                                                                        13

Grapefruit/Grapefruit Juice                         Grapefruit juice inhibits CYP3A4 and P-glycoprotein                                                                                               19, 20 

Macrolide Antibiotics                             These macrolides are CYP3A4 inhibitors                                                                                                                 96–98

Clarithromycin, erythromycin                       

Nefazodone                                                 Nefazodone is strong CYP3A4 inhibitor                                                                                                                   99, 100 

Niacin                                                            Increased risk for myopathy/rhabdomyolysis due to additive effects of both drugs                                             101 

Phenytoin                                                     Increased levels of fluvastatin due to competition for CYP2C9                                                                              13

Protease Inhibitors                                    These antivirals are strong CYP3A4 inhibitors and many statins require CYP3A4 for their metabolism               84, 87, 102 

Atazanavir, boceprevir, darunavir,                                                                                                                                                                                                 

fosamprenavir, indinavir, 

lopinavir/ritonavir, nelfinavir, ritonavir, 

saquinavir, telaprevir, tipranavir 

Ranolazine                                                    Ranolazine inhibits CYP3A4 and is a moderate P-glycoprotein inhibitor                                                                65

Rifampin                                                        Rifampin induces CYP450 enzymes but inhibits some non-CYP450 elimination pathways                                   13, 103 

St John's wort                                              St John’s wort is a CYP3A4 inducer                                                                                                                         53 

Telithromycin                                                Telithromycin is a strong CYP3A4 inhibitor                                                                                                              13, 104

Ticagrelor                                                      Increased risk for myopathy/rhabdomyolysis due to decreased metabolism of simvastatin                               105

                                                                      (and likely lovastatin)                                                                                                                                                

Troglitazone                                                  Troglitazone is a CYP3A4 inducer                                                                                                                            106

Warfarin                                                        Possibly due to decreased warfarin metabolism and displacement of warfarin from protein                             70, 107

                                                                      binding sites

CYP = cytochrome P-450; OATP = organic anion transporting polypeptides.
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CYP3A4-metabolized statins, most of whom received simvastatin (72 %)

and atorvastatin (24 %). Almost one third of (30 %) of patients prescribed

a CYP3A4-metabolized statin were also prescribed a CYP3A4 inhibitor

(predominantly macrolide antibiotics, or calcium channel blockers).49

Many commonly used drugs are moderate-to-potent inhibitors of

CYP3A4. These include calcium channel blockers, antifungals,

antidepressants, antiretrovirals, immunosuppressants, and macrolide

antibiotics.50 Statin plasma levels may also be decreased as a result of

DDIs; this has been reported in CYP inducers such as rifampicin51

phenytoin52 and St John’s wort.53 A summary of clinically significant statin

DDIs is given in Table 3.

The Understanding statin use in America and gaps in education

(USAGE) survey assessed the attitudes, beliefs and behavior of

current and former statin users.54 Nearly half of the 10,138 patients

surveyed had switched or discontinued statin use, and amongst

former statin users, 65 % cited side effects as the primary reason 

for discontinuation (see Figure 3). Muscle-related side effects 

were reported by 60 % and 25 % of former and current users,

respectively. The average respondent used three prescription and/or

non-prescription products with the potential to cause DDIs. Of the

respondents, 84 % used at least one product with known DDI

potential. Despite this, only 38 % of all respondents reported concern

with potential DDIs.

The survey revealed important communication gaps regarding DDIs. Only

26 % of respondents spoke to their doctor about the possibility of DDIs.

Of the respondents, 42 % who had concerns about DDIs but did not

discuss them with their doctor stated that they relied on their pharmacist

to identify potential DDIs. In fact, 57 % believed that the pharmacist was

responsible for managing this issue, although a pharmacist may not be

aware of their complete treatment regimen since patients may use more

than one pharmacy. These findings highlight the need for discussion and

education about DDIs within the clinical consultation. 

Patient Populations at Risk of 
Drug–Drug Interactions
Certain subgroups of patients have an increased risk for DDIs

compared to the general population, and include the elderly and

those with comorbidities such as CVD and HIV.  

Drug–Drug Interactions Risk in the Elderly
Elderly patients often have multiple medical conditions, such as

hypertension, arthritis, heart disease, cancer, and diabetes, which

require multiple medications. This raises the potential risk of DDIs 

and adverse drug reactions. In the US, people over 65 comprise

approximately 13 % of the population but are responsible for around

30 % of all prescriptions written.55 A US study that aimed to estimate

the prevalence and patterns of medication use among older 

adults (including concurrent use) found that 29 % percent of the 

3,005 surveyed used at least five prescription medications

concurrently. Among prescription medication users, concurrent use

of over-the-counter medications was 46 % and concurrent use of

dietary supplements was 52 %.56 In a recent study of concomitant

exposure of patients to CYP3A4-metabolized statins and CYP3A4

inhibitors in the UK primary care population, DDI rates were highest in

the subgroup aged 65 and over.49

Clinical evidence supports the use of statins in elderly patients

despite the elevated risk of DDIs.57 Two recent studies found 

that pitavastatin and pravastatin are safe and effective in 

elderly patients with primary hypercholesterolemia or combined

dyslipidemia. In one (n=641), pitavastatin showed significantly greater 

lipid-lowering efficacy over 12 weeks.58 The other (n=539) was a 

long term extension to 60 weeks but without an active comparator.

Pitavastatin demonstrated long-term safety and efficacy in this

patient population.59

Drug–Drug Interactions Risk in Patients with
Cardiovascular Disease
Statin DDIs may occur with cardiovascular agents such as calcium

channel blockers, antiarrhythmics, digoxin and warfarin (see Table 2).

Calcium-channel blockers are frequently co-prescribed with statins

since hypertension and chronic stable angina are a common

comorbidity in patients with dyslipidemia. However, certain calcium

channel blockers such as verapamil and diltiazem are weak 

or moderately potent CYP3A4 inhibitors13 and have been shown to

significantly increase serum concentrations of both lovastatin 

and simvastatin.60–62 The FDA has introduced dose limitations on

verapamil and diltiazem for these two statins.24 Other statins, such 

as pitavastatin, have not been shown to significantly interact with

calcium channel blockers. In a pharmacokinetics study in healthy

volunteers, pitavastatin total (AUC) and peak (Cmax) exposure was

only minimally increased by 10 % and 15 %, respectively.63

The anti-arrhythmic agent amiodarone is also a potent CYP34A inhibitor. 

A study of concomitant amiodarone therapy in statin-associated AEs,

concluded that although the incidence is relatively rare, clinicians

should be vigilant about muscle-related complaints in elderly patients 

on multiple medications who are being treated with a statin and

amiodarone.64 The dosage of simvastatin is limited when used in

combination with amiodarone based on an FDA announcement.25 The

angina therapy ranozaline has also been found to increase plasma

concentrations of simvastatin twofold.65

Cardiovascular Risk
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Figure 3: Reasons Cited for Switching or Stopping 
Statin Medication Use among Current and Former 
Statin Users Who Ever Switched or Stopped 
Taking a Statin Medication 
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Source: Cohen et al., 2012.54
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Statins have been shown to impact international normalized ratio

(INR) when co-administered with warfarin. The interaction is

particularly marked with simvastatin, and interactions have also 

been reported with fluvastatin.66,67 Recent data suggest that a

CYP2C9*3 polymorphism predicts an interaction between warfarin

and simvastatin.68 No DDIs between warfarin and pitavastatin have

been demonstrated.69 Steady-state INR during warfarin treatment 

did not change significantly when pitavastatin was added to the

regimen, while a significant increase was observed when rosuvastatin

was added.70

Fibrates are used as adjunctive therapy to many forms of

hyperlipidemia in combination with statins. However, gemfibrozil

increases the blood concentration of rosuvastatin approximately

twofold71 and the concomitant use of gemfibrozil and atorvastatin,

lovastatin, pravastatin or simvastatin have been associated with

reported cases of rhabdomyolysis.72–74 The postulated mechanisms 

for this DDI include inhibition of glucuronidation75,76 and inhibition of

CYP2C8 and OATP1B1.13 In contrast, fenofibrate has a minimal effect 

on the metabolic pathways of statins although it is a CYP2C9 inhibitor.76

Drug–Drug Interactions Risk in Patients Taking 
Protease Inhibitors
Protease inhibitors are prescription antiviral drugs targeting HIV or

hepatitis C virus (HCV) and are used to treat infections associated

with these viruses.77,78 Antiretroviral therapy has dramatically

increased survival for HIV-infected individuals. However, as this

population lives longer, CHD has become an important comorbid

condition. Furthermore, exposure to protease inhibitors in HIV

infection is associated with an increased risk of dyslipidemia owing

to increased triglyceride synthesis,79 increased levels of LDL-C80

and an increased risk of CHD.81,82 Patients with HIV have a high risk 

of statin DDIs, due to the multiple medications often required 

for treatment. 

Protease inhibitors are potent inhibitors of CYP3A4.83 The simvastatin 

AUC increases 32-fold when co-administered with the combination of

saquinavir/ritonavir, white atorvastatin increases approximately

twofold.83 Pravastatin can be used safely with most protease

inhibitors83 although it may be less effective as a result of induction of

enzymes that metabolize pravastatin.84 When administered with

darunavir, however, pravastatin levels may increase up to fivefold83

depending on polymorphisms within the SLCO1B1 drug transporter

gene thereby making it difficult to predict whether a significant

interaction will occur or not.85

The FDA recently released a communication regarding the risks of 

co-prescribing statins and protease inhibitors in cases of HIV and HCV

infection.86 Lovastatin, simvastatin, atorvastatin, and rosuvastatin have

undergone labeling changes to reflect the risk for interactions with 

HIV and HCV protease inhibitors. Lovastatin and simvastatin are

contraindicated for use with HIV protease inhibitors or HCV protease

inhibitors, boceprevir and telaprevir. It is recommended by the FDA

that co-administration of atorvastatin with tipranavir/ritonavir or

telaprevir should be avoided. The recommended dose of atorvastatin

is limited to 20 mg when co-administered with darunavir/ritonavir,

fosamprenavir, fosamprenavir/ritonavir, or saquinavir/ritonavir.

Caution is advised when co-administering atorvastatin with

lopinavir/ritonavir and the dose of atorvastatin should be the 

lowest necessary. Doses of rosuvastatin should be limited to 10 mg

when co-administered with the combinations lopinavir/ritonavir 

and atazanavir/ritonavir.86 Pitavastatin in combination with

lopinavir/ritonavir, darunavir/ritonavir, and atazanavir has shown 

no significant DDIs in healthy volunteers, and as such, there are no

recommended dose limitations or restrictions when using pitavastatin

in combination with HIV protease inhibitors.9,86–89

Management Strategies in the Treatment of
Dyslipidemia to Reduce the Potential for 
Drug–Drug Interactions
The use of concomitant medications is widespread in patients 

with dyslipidemia and correct drug selection and dosing is crucial to

avoid DDIs. Knowledge of statin pharmacokinetics can be employed 

to make better treatment choices. Recent study data indicate that 

many pharmacy clinical decision-support systems perform less 

than optimally with respect to identifying well-known DDIs, and that

many important statin DDIs are not identified. There is a need for

comprehensive pharmacy clinical decision-support software to alert

users about clinically important DDIs.90 Continued efforts should 

be made at educating clinicians about statin drug-interactions 

and the impact they have on patient side-effects, adherence, and 

clinical outcomes.

Summary and Concluding Remarks
The safety and tolerability of statins supports their use as first-line

treatment for hyperlipidemia. However, patients who are receiving

statin therapy are often taking multiple medications for comorbid

conditions, and so are at increased risk of adverse effects because of

altered drug metabolism via CYP and hepatic influx and efflux

transporters. It is important for patients and clinicians to be aware 

of the potential for DDIs. Caution should be exercised in prescribing

certain statins in combination with CYP3A4 inhibitors. Certain 

patient subgroups are more at risk of statin DDIs, notably patients

with CVD and HIV infection, since some calcium channel blockers 

and antiretrovirals are CYP3A4 inhibitors. The elderly are also at 

high risk, due to the high incidence of polypharmacy within this

patient population.

As the clinical complexity of patients at high cardiovascular risk and

with multiple comorbidities increases, so does the potential for DDIs.

Pitavastatin has a distinctive metabolic profile, as a result of which 

it is marginally metabolized by CYP enzymes, resulting in a reduced

risk of DDIs. Its reduced potential for CYP-mediated DDIs has been

studied in combination with a wide range of drug classes known to be

CYP inhibitors and has been clinically evaluated in patient populations

where multiple medications are used, including the elderly, those with

high CV risk and patients with diabetes. 

Knowledge of statin pharmacokinetics and their mechanisms of DDI

allows the clinician to make better therapeutic choices, enabling an

individual approach to lipid-lowering regimens based on the patient

profile and concomitant medications. n
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