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Changes in lifestyle and eating behavior in humans over
the last century have contributed significantly to the
epidemic of obesity and an associated dramatic increase
in the incidence of diabetes worldwide (Zimmet,
Alberti et al. 2001). Type 2 diabetes accounts for more
than 90% of all diabetes cases, and is characterized by
impaired insulin action in peripheral tissues such as
skeletal muscle, adipose tissue, and liver (insulin
resistance) and insufficient secretion of insulin from
pancreatic B-cells in response to a rise in glucose.
Defects in the
development of overt diabetes, and although increased

insulin action always precede
insulin secretion initially compensates for the insulin
diabetes when B-cell

compensation fails (Kahn 1998).

resistance, overt occurs

Obese individuals who do not develop diabetes show
an increase in B-cell mass that seems to compensate for
the metabolic demand and insulin resistance, while a
failure of B-cell adaptation in some obese individuals
triggers the development of overt type 2 diabetes.
Understanding how B-cells compensate for insulin
resistance will be important in the planning of
therapeutic approaches to prevent and/or delay the
onset of type 2 diabetes.

Adult B-cell mass can adapt to metabolic demands such
as pregnancy, obesity and insulin resistance through
developing islet hyperplasia and hyperinsulinemia. The
mechanisms that maintain adult B-cell mass are
currently intense area of research in type 2 diabetes and
also in stem cell biology. Several mechanisms have been
proposed to regulate adult B-cell mass including B-cell
replication, B-cell size, neogenesis from duct cells and
apoptosis (Kulkarni 2005) (Rhodes 2005). Among these
mechanisms, studies in rodents including lineage
analysis methods support B-cell replication as a major
pathway for the renewal of adult B-cells (Dor, Brown et
al. 2004). Two independent reports have examined the
role of cyclin D2 and provide additional support for the
replication hypothesis. Mice lacking cyclin D2 showed
a selective decrease in B-cell expansion while
maintaining a normal complement of ductal cells
suggesting that the cell cycle protein is important for
proliferation of B-cells independent of contributions
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from duct cells. Conversely, many studies have
demonstrated that islet progenitor cells reside in the
pancreatic ducts of adult humans and rodents, and
neogenesis of B-cells from pancreatic duct cells may be
one of the mechanisms of B-cell regeneration in
humans (Bonner-Weir, Taneja et al. 2000). Several
factors, such as TGF-B, epidermal growth factor (EGF),
extracellular matrix, and glucagon-like peptide-1
(GLP-1), have all been suggested to be involved in this
proliferation process. While most of these studies have
been reported to occur in rodent models of
pancreatectomy or pancreatic-duct ligated models, or in
vitro experimental systems, it is currently unclear
whether similar mechanisms and pathways are also

operative in vivo in insulin resistant states in humans.

Another potential mechanism that can contribute to
B-cell expansion is mostly associated either with early
tissue development or neoplasia and is termed
epithelial-to-mesenchymal transition (EMT). EMT
generally occurs in epithelial cells and involves
of  differentiated
reorganization of cytoskeleton and redistribution of

disappearance junctions,
organelles, together transforming epithelial into
mesenchymal cells (Savagner 2001). The mesenchymal
cells in turn may regain a fully differentiated epithelial
phenotype via a mesenchyme-to-epithelial transition
(MET) or reverse EMT. It is possible that a similar
process is also occurring in normal cells responding to
physiological demands that require cell or tissue
expansion. Indeed, features suggestive of EMT were
shown to occur in vivo in mouse models of insulin
resistance manifesting robust islet hyperplasia, namely
— the insulin receptor (IR)/IR substrate-1 (IRS-1)
double heterozygous (IR/IRS-1) mouse and the
liver-specific IR knockout (LIRKO) mouse,
(Kulkarni, Jhala et al. 2004) (Bruning, Winnay, et al
1997)(Kulkarni, Almind, et al, 2003). Evidence that
EMT can occur in human islet precursor cells
(Gershengorn, Hardikar et al. 2004), suggests this
process may be a conserved response across species. It
is worth exploring whether such a process occurs in
early stages of diabetes in humans to allow for a
that
prevents/delays the overt manifestation of the disease.

compensatory islet hyperplastic response
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Several hormones and nutrients that utilize varied
mechanisms and signaling pathways have been
implicated in islet hyperplastic processes to overcome
hyperinsulinemia caused by whole body insulin
resistance. A role for glucagon-like-peptide-1 7-36
(GLP-1) is supported by human and rodent studies
(Stoffers 2004). GLP-1 receptor agonists, among
which exendin-4 has been developed for clinical use,
not only acutely lowers blood glucose but also engages
signaling pathways in the B-cell that lead to
stimulation of B-cell replication and neogenesis and
inhibition of B-cell apoptosis (Brubaker and Drucker
2004). Through a similar mechanism, glucose-
dependent insulinotropic polypeptide (GIP) receptor
activation stimulates insulin secretion, enhances B-cell
proliferation, and reduces apoptosis (Wideman and
Kieffer 2004).
endogenous postprandial GLP-1 and GIP levels by
inhibition of dipeptidyl peptidase-IV (DPP-1V) also
expands B-cell mass through related mechanisms
(Pospisilik, Martin et al. 2003).

Moreover, potentiation of the

Recent reports describe a fraction of patients who
have undergone gastric by-pass surgery manifest severe
that  is
inappropriate for the ambient glycemia. While most of

hypoglycemia and  hyperinsuliemia
these patients exhibit altered B-cell mass, some of them
show a greater than normal GLP-1 secretory response
after a meal suggesting the incretin hormone may
contribute to either an increase in B-cell mass and/or
insulin hypersecretion. It is worth noting that almost all
patients manifest hyperinsuliemia that is inappropriate
for the levels of circulating glucose, prompting the
notion that insulin itself is a potential B-cell growth
factor. Several lines of evidence support this possibility.
Insulin treatment has been shown to increase the
regenerative activity of B-cells in rodent models of
diabetes induced by alloxan or
(McEvoy, Schmitt et al. 1978; Movassat, Saulnier et al.
1997). A role of insulin as a growth factor is also

streptozotocin

supported by studies in B-cell-specific IR knockout
(BIRKO) mice, which display an age-dependent
decrease in B-cell mass (Kulkarni, Bruning et al. 1999),
and by reports that MIN6 B-cells treated with IR
siRINA leads to altered expression of cell cycle protein
and proliferation (Ohsugi, Cras-Meneur et al. 2005).
Importance of insulin and its signaling cascade in
controlling B-cell mass in the context of diabetes is also
supported by recent studies of mouse with knockout of
some of insulin signaling components. Disruption of
IRS-2, but not IRS-1, in mice leads to overt diabetes
because of insufficient B-cell compensation for whole
body insulin resistance (Araki, Lipes et al. 1994;
Tamemoto, Kadowaki et al. 1994;Withers, Gutierrez et
al. 1998; Kubota, Tobe et al. 2000). Other insulin
signaling components, such as p70 S6 kinase (Pende,
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Kozma et al. 2000), Akt1/PKBB (Tuttle, Gill et al.
2001), (Nakae, Biggs et al. 2002), 3-
phosphoinositide-dependent protein kinase 1 (PDKT1)
(Hashimoto, Kido et al. 2006), that are shown to be
involved in B-cell growth by knockout or transgenic

Foxo1l

approaches, also support the importance of insulin
signaling in B-cell growth in vivo. Together, these
studies make a strong case for insulin as a direct or
permissive factor in B-cell growth.

Several other proteins in the insulin/IGF-I signaling
pathway have been linked to B-cell growth and
survival responses. Notably, the transcription factor
FoxO1 has linked to the
homeodomain protein PDX-1, which was originally

been pancreatic
described to be critical only for embryonic pancreatic
cell proliferation. The homeodomain protein has now
been shown to be required for islet compensatory
responses to insulin resistance indicating an important
role in post-developmental states of B-cell growth
(Kulkarni, Jhala et al. 2004).

Glucose (Bonner-Weir, Deery et al. 1989) has been
shown to increase B-cell mass in rodent models,
however, it is possible that the effects of glucose are
mediated by secreted insulin acting in an autocrine
manner (Martinez, Cras-Meneur, et al, 2006). Other
mechanisms that have been proposed to contribute to
regeneration of B-cells are transdifferentiation from
pancreas acinar cells or hepatocytes (Ferber, Halkin et
al. 2000; Kojima, Fujimiya et al. 2003; Song, Ko et al.
2004). Whether one or all of these mechanisms are
involved in islet compensatory response to insulin
resistance in humans is not known.

Among pharmacological agents, the observation that
sulfornylureas (SUs), widely used oral hypoglycemic
agents, can induce apoptosis in rodent B-cells or
cultured human islets (Efanova, Zaitsev et al. 1998;
Maedler, Carr et al. 2005) has prompted intense interest
in the development of therapeutic agents that preserve
or restore functional B-cell mass. Several agents with
the potential to inhibit B-cell apoptosis and/or increase
B-cell mass have been identified in pre-clinical studies
(Baggio and Drucker 2006).

In addition to GLP-1 analogs (discussed above), the
thiazolidinediones (TZDs) have also been suggested to
promote B-cell survival (Finegood, McArthur et al.
2001; Ishida, Takizawa et al. 2004; Kawasaki, Matsuda et
al. 2005). Although it remains unclear if TZDs affect B-
cell mass by direct or indirect mechanisms, it might be
one attractive anti-diabetic agent that is potentially
suitable for obese diabetic patients with insulin
resistance, that can both improve insulin sensitivity and
preserve B-cell mass.
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