
The pathogenesis of type 2 diabetes includes pancreatic β-cell

dysfunction and insulin resistance; most importantly in hepatocytes,

myocytes, and adipocytes. Type 2 diabetes is well known to be a

progressive disorder1 characterized by deteriorating capacity for insulin

release and action. Both defects are recognizable early on and present

even in non-diabetic offspring of patients with type 2 diabetes.2–4

However, there is general consensus that insulin sensitivity is impaired

early, whereas worsening of hyperglycemia over time is related to β-cell

dysfunction. Hence, insulin resistance in obesity is strongly associated

with type 2 diabetes; the major reasons include fatty acid delivery to the

liver (especially from intra-abdominal fat) and other organs and adipose

tissue release of inflammatory cytokines and peptides that impair insulin

signaling and islet insulin secretion. At cellular and molecular levels the

pathogenesis of diabetes becomes far more complex. Here, the focus

will be on the role of mitochondria and mitochondrial reactive oxygen

species (ROS) in mediating the general mechanisms.

Mitochondrial Function by Cell Type
Our approach will be to consider mitochondrial function within the most

relevant cell types including myocytes, hepatocytes, adipocytes, and

islet β-cells as well as non-insulin-sensitive cells representing targets for

complications. We will attempt to integrate defects in a way consistent

with the pathophysiology of diabetes and its complications.

Muscle
Impaired oxidative phosphorylation by muscle mitochondria is

associated with insulin resistance. Nicotinamide adenine dinucleotide

(NADH) oxidoreductase and citrate synthase activity were noted 

to be reduced in mitochondria isolated from human muscle biopsy

specimens obtained from diabetic and obese subjects compared with

lean subjects.5 Mitochondrial oxidative phosphorylation has also been

assessed in human muscle in vivo using nuclear magnetic resonance

(NMR) spectroscopy. In this way, Szendroedi et al.6 demonstrated

defective muscle adenosine triphosphate (ATP) synthetic flux in

subjects with type 2 diabetes, even under hyperinsulinemic,

hyperglycemic conditions. 

Studies using 13C NMR to assess tricarboxylic acid (TCA) flux rates 

along with 31P NMR to assess phosphorylation of adenosine

diphosphate (ADP) demonstrated impaired skeletal muscle oxidative

phosphorylation, increased intra-myocellular lipid, and decreased TCA

cycle substrate oxidation in insulin-resistant offspring of individuals with

type 2 diabetes.7–9 Similar findings were reported in the muscle of elderly

subjects with insulin resistance compared with young controls.10 In

another study, type 2 diabetes was characterized by increased lipid

content in myocytes as well as a relative decrease in the proportion of

enzymes regulating oxidative, as opposed to glycolytic, metabolism.11
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Abstract
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Furthermore, exercise tolerance and recovery of intracellular

phosphocreatine post-exercise are impaired in subjects with type 2

diabetes consistent with mitochondrial dysfunction.12,13

Other studies of mitochondria or saponin-permeabilized muscle fibers

isolated from humans with type 2 diabetes showed impairments in

oxygen consumption14,15 even when normalized for mitochondrial

content.15 However, another report showed that mitochondrial respiration

was normal when expressed per DNA content, suggesting that the

impairment was not in function but in number of mitochondria.16 In a

recent study of mitochondria isolated from insulin-resistant, obese, but

not diabetic humans compared with insulin-sensitive lean subjects,

maximal respiration rates were increased in the obese subjects17

associated with increased H2O2 production. That study also showed that

the mitochondria of the insulin-resistant subjects maintained a higher

extra-mitichondrial ATP free energy suggesting a higher thermodynamic

driving force thought responsible for the increase in ROS production. 

Perturbed mitochondrial biogenesis may be a cause of reduced

mitochondrial number as well as reduced capacity for oxidative

phosphorylation in diabetes. An important factor driving mitochondrial

biogenesis at the molecular level is the peroxisome proliferator-activated

receptor gamma (PPARγ) coactivator (PGC-1α), representing a coactivator

of nuclear transcription factors, PPARγ and PPARα, and several other

genes involved in energy homeostasis.18–20 Muscle biopsy studies showed

that PGC-1α is reduced in patients with type 2 diabetes21–23 as well as in

family members of individuals with type 2 diabetes.23

There have been recent studies of intrinsic respiration by heart 

and skeletal muscle mitochondria isolated from tissues of type 2

diabetic models. Boudina et al.24 examined heart mitochondrial 

function in saponin-permeabilized heart muscle fibers obtained from

insulin-resistant, diabetic, leptin-receptor-deficient db/db mice. These

investigators reported decreased respiration on complex I substrates

and on palmitoyl–carnitine, associated with proportionally reduced 

ATP production and decreased content of the F1 alpha-subunit 

of ATP synthase. Our laboratory recently examined respiratory function

in heart and skeletal muscle mitochondria isolated from high-fat-fed

rats also subject to low-dose streptozotocin (STZ) to mimic impaired

glucose tolerance.25 Our data revealed no change in respiration in these

mildly hyperglycemic rats compared with high-fat-fed controls.

High-fat feeding associated with insulin resistance26 results in

downregulation of several human genes involved in oxidative

phosphorylation and mitochondrial biogenesis.27 Metabolomic studies in

rodents suggest that enhanced fat metabolism seen with high fat

feeding overloads muscle mitochondria with oxidation products in a

way that restricts their ability to completely metabolize these products

to CO2. Koves et al.28 showed that high-fat feeding increased

acylcarnitines representing products of incomplete β-oxidation of fatty

acids. This was associated with decreased TCA intermediates and an

inability of mitochondria to switch from using fat-derived substrates to

the glucose-derived metabolite, pyruvate. These perturbations could be

prevented by restricting the mitochondrial entry of fatty acids by 

knock-out of malonyl coenzyme-A (malonyl-CoA) decarboxylase (MCD).

These data were interpreted to imply that the mitochondria of 

high-fat-fed rodents are exposed to increased, rather than decreased,

rates of β-oxidation, but become impaired and unable to handle the

high rate of flux.

How do the above findings translate to insulin resistance? As indicated

in Figure 1, there is a rationale whereby mitochondrial dysfunction 

(or reduced mitochondrial density) might impair insulin signaling.29

Mitochondrial dysfunction should lead to impaired fatty acid oxidation,

resulting in increased intracellular fatty acyl-CoA and diacylglycerol

content with consequent activation of protein kinase C.30,31 This, in turn,

triggers a serine kinase cascade ultimately resulting in serine

phosphorylation of insulin receptor substrate type 1 (IRS-1). This has the

consequence of blocking the tyrosine kinase activity of the insulin

receptor on IRS-1, thereby blocking the insulin signaling pathway.

Liver 
Any mitochondrial-mediated alteration in energy hemostasis in

hepatocytes would impact the balance between gluconeogenesis,

glycolysis, and glycogen storage/breakdown, thereby impacting

glycemia in diabetic states. In hepatocytes, PGC-1α regulates

gluconeogenesis and fat oxidation.32 The NAD+-dependent histone

deacetylase, SIRT1, increases gluconeogenesis in liver cells through its

effects on PGC-1.33 Consistent with the above, mice deficient in PGC-1
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Figure 1: Inhibition of Insulin Signaling by 
Mitochondrial Dysfunction
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The schematic diagram depicts the consequences of excess fatty acyl-coenzyme A (acyl-CoA)
and reactive oxygen species (ROS) production on the insulin signaling pathway leading to the
insulin responsive glucose transporter, GLUT4. In response to an insulin-induced
conformational change in the internal or β-subunits of the insulin receptor (IR), tyrosine
residues undergo autophosphorylation and the IR acquires tyrosine kinase activity, leading to
phosphorylation of the insulin receptor substrate-1 (IRS-1). This initiates a signaling cascade
activating serine/threonine kinase protein kinase B (Akt) and translocation of the GLUT4 to the
cell membrane. GLUT4 fusion with the membrane results in glucose uptake by facilitated
diffusion. Mitochondrial dysfunction opposes insulin signaling in two ways: (i) by interfering
with oxidation of fatty acyl-CoA and consequent accumulation of intracellular lipid and
diacylglycerol and (ii) by generation of ROS. Both processes activate serine kinase reactions
leading to serine phosphorylation of IRS-1 and interference with insulin signal transduction. 
FA = fatty acid; FATPs refers to various transport proteins active in fatty acid uptake.
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develop hepatic steatosis and are prone to hypoglycemia,34,35 among

several other multisystem abnormalities. 

In hepatocytes, the forkhead transcription factor Foxa2 activates

transcription of genes regulating lipid metabolism and ketogenesis. In

insulin-resistant or hyperinsulinemic mice, Foxa2 is inactive and

confined to the cytoplasm of hepatocytes,36 promoting lipid

accumulation as opposed to oxidation, thereby encouraging export of

fat, ketones, and glucose. Indeed, degradation of malonyl-CoA in liver by

overexpression of the degrading enzyme malonyl-CoA-decarboxylase

favors mitochondrial fat oxidation and reduces circulating free fatty acids

and ketones, improving insulin sensitivity.37 Mice deficient in acetyl-CoA

carboxylase 2 (ACC2) manifest reduced malonyl-CoA levels and a higher

rate of fatty acid oxidation and resist diet-induced obesity and diabetes.38

Recent studies of mice with selective hepatic insulin resistance due to

deletion of IRS-1 and IRS-2 revealed that target genes of forkhead box 

O1 (Foxo1) were upregulated.39 These target genes included heme

oxygenase-1, which disrupts mitochondrial complexes III and IV causing

mitochondrial dysfunction. In addition, PGC-1α, although upregulated,

was acetylated and therefore inactive towards mitochondrial biogenesis.

Mitochondrial oxidative metabolism was impaired in these mice but

ameliorated by deletion of hepatic Foxo1, suggesting an important role

for Foxo1 in integrating insulin signaling and mitochondrial function.

Adipose Tissue
There is also evidence for altered mitochondrial function of adipocytes

in type 2 diabetes. Mitochondrial respiration, mitochondrial numbers,

and fatty acid oxidation, were reported to be decreased in db/db mice,

a leptin-receptor-deficient obese model of type 2 diabetes.40 Other

studies revealed an attenuated activation of mammalian target of

rapamycin (mTOR) signaling in adipose tissue obtained at surgery from

patients with type 2 diabetes compared with controls.41 Downstream

effects included mitochondrial dysfunction and increased autophagy.

Exposing 3T3 adipocytes to high concentrations of glucose or free fatty

acids resulted in decreased mitochondrial potential, morphologic

changes wherein mitochondria became smaller and more compact, and

downregulation of PGC-1.42

The above findings appear applicable to the pathogenesis of human type

2 diabetes, since reduced mitochondrial function in adipose tissue would

result in net lipolysis. The consequent increase in fatty acid release 

could contribute to the insulin resistance of type 2 diabetes, since fatty

acids impair muscle and liver insulin sensitivity.29 This could be further

compounded by adipocyte release of inflammatory cytokines associated

with increased fat mass. The insulin-sensitizing thiazolidinedione drugs

reportedly improve adipose mitochondrial function,43 possibly a

mechanism for improved whole body insulin sensitivity.

Islet β-cells
Beyond actions on insulin-sensitive target cells, mitochondria are critical

in modulating β-cell insulin secretion. As depicted in Figure 2, any

alteration in mitochondrial function that could change ATP production

would have a major impact on the capacity of glucose to trigger insulin

secretion. In particular, altered activity of uncoupling protein 2 (UCP2),

the UCP subtype expressed in islets, would be important given its effect

of reducing ATP production at any given level of fuel oxidation. Indeed,

Zhang et al.44 reported that mice genetically deficient in UCP2 manifest

higher islet ATP levels and increased glucose-stimulated insulin release.

Further, the defect in first-phase insulin release, known to be present 

in leptin-deficient obese ob/ob mice, could be restored by UCP2 

knock-out.44 UCP2 knockout also protected insulin release in high-fat-fed

rodents and in islets exposed to lipid in vitro.45,46 Interestingly, a kinetic

analysis47 revealed that the ATP–ADP ratio was much more regulated by

mitochondria in islet β-cells (modeled by insulinoma cells) than 

by mitochondria of skeletal muscle, underscoring the importance of

mitochondria in regulating islet insulin secretion. As opposed to UCP

knock-down, overexpression of UCP2 inhibits glucose-induced insulin

release as demonstrated by our laboratory using INS-1 cells48 and by

Chan et al.49 in cultured pancreatic islets.

UCP2 may mediate a link between mitochondrial superoxide production

and impaired insulin release, possibly explaining the progressive 

nature of type 2 diabetes. In this paradigm, islets exposed to high

concentrations of glucose or fatty acids may generate more superoxide

(see below). Superoxide is known to activate UCPs, possibly as a feedback

means of protection from further radical generation through reduction of

membrane potential.50 However, this would also decrease ATP formation

and reduce insulin secretion. In fact, Krauss et al.51 showed that induction

of UCP2 by endogenous superoxide-impaired insulin secretion from

isolated islets in wildtype but not UCP2 knock-out mice. 

In past years, glycolysis and glucokinase have been considered the

major factors regulating glucose-induced insulin secretion.52 However,

the above considerations now direct attention to mitochondria with a

major role for UCP2 in modulating mitochondrial potential, ATP
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Figure 2: Mitochondria and Insulin Secretion

K+ (out)

KATP (channel)

Ca+ (in)

Insulin
Release

O2

ATP

Glu

Glu-6-P

Pyruvate

Glu

GLUT2

Voltage-
dependent
calcium 
channel

Oxidative
damage

UCP2

xTCA

.-

Glucose-induced insulin release is dependent on mitochondrial adenosine triphosphate (ATP)
generation and affected by both mitochondrial reactive oxygen species (ROS) and uncoupling
protein-2 (UCP2). ATP is required to open potassium ATP channels, thereby inducing entry of
calcium and insulin release from storage granules. If hyperglycemia induces excess superoxide
(O2

.-) and consequent oxidative damage, the result would be progressively impaired insulin
secretion and worsening of the diabetic state. Glu = glucose; Glu-6-p = glucose 6-phosphate;
GLUT2 = glucose transporter 2; TCA = tricarboxylic acid.
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production, and therefore insulin release.53 The interrelations of

mitochondrial ATP formation, mitochondrial uncoupling, and insulin

release are depicted in Figure 2. 

Interestingly, insulin resistance at the level of skeletal muscle may

induce islet β-cell mitochondrial dysfunction and progression to

diabetes. Evidence for this comes form the MKR mouse, which has a

dominant-negative IGF-I receptor mutation specifically in skeletal 

muscle leading to insulin resistance and hyperglycemia.54 These mice

manifest defective β-cell mitochondrial membrane polarization and

impaired calcium signaling and differential expression of mitochondrial

proteins, including membrane proteins and proteins involved in 

electron transport.54

Mitochondrial Reactive Oxygen Species,
Diabetes, and Diabetic Complications
Mitochondrial ROS are believed to be important in the pathogenesis,

progression, and long-term complications of diabetes. This follows from

evidence that elevated glucose and/or free fatty acids drive the

formation of ROS,55–57 impairing both β-cell insulin release and insulin

sensitivity. Moreover, oxidative damage to non-insulin-sensitive cells

chronically exposed to high glucose and fatty acids likely contributes to

the complications of diabetes.55,58,59 How this happens still needs more

detailed resolution. The general supposition is that mitochondrial

metabolism in the presence of excess nutrients generates high levels of

substrate flux to mitochondria resulting in high mitochondrial NADH/NAD

and flavin adenine dinucleotide (FADH2)/FAD ratios and high potential at

low respiration rates (closer to state 4 conditions) and, thereby, more

electron leak.59,60 In particular, this would apply to the classic sites of

diabetic complications including retina, kidney, neurons, and vascular

endothelium; in other words, cells that take up glucose by facilitated

diffusion unregulated by insulin.61 Hence, ROS may be involved in 

a vicious self-perpetuating process favoring the development and

worsening of the diabetic state and induction of complications. 

On the other hand, the above explanation has been criticized as 

over-simplistic59 and is not supported by all studies. For example,

cultured hepatocytes exposed to high glucose generate more glycogen

rather than increase respiration, potential, or reducing equivalents62 and

some studies do not support and effect of glucose to induce ROS at the

cell level.63,64 Differences may be due to methodology, including specific 

cell type(s) examined, antecedent cell nutrition, and the particular

means of detecting ROS. In this author’s view, data on nutrient-induced

ROS production need to be viewed in critical fashion as there a many

pitfalls and potential for non-specific findings.65 A recent report66

demonstrated several respiratory abnormalities and downregulation 

of proteins, but without excess ROS production, in dorsal root ganglia of

streptozotocin diabetic rats (a model more reflective of type 1 diabetes). 

Beyond ROS production, there is evidence for oxidative damage in

animals and humans with diabetes. Plasma levels of markers of lipid

peroxides such as 8-iso-prostaglandin F2α,67 conjugated dienes, and

lipid hydroperoxides68 are elevated, at least in type 1 diabetes, while

antioxidant capacity assayed as total plasma antioxidant capacity

(TRAP) is reduced.68 Moreover, DNA damage is detectable in circulating

lymphocytes of subjects with insulin-dependent diabetes and correlates

to the extent of glucose elevation.69 Furthermore, the extent of urinary

8-OHdG excretion, a marker of DNA damage, correlates with the extent

of renal damage in subjects with type 2 diabetes.70 A recent study

showed that mice fed a high-fat diet manifest reduced peak exercise

oxygen consumption along with reduced ADP-stimulated mitochondrial

respiration, mitochondrial content, and complex I and III activities.71

These defects were ameliorated by feeding apocynin, an inhibitor of

NAD(P) oxidase, suggesting that cytoplasmic ROS had secondary

adverse effects on mitochondrial function. Of additional note is that

oxidative stress is well known to trigger the formation of advanced

glycation end-products such as carboxymethyl lysine (CML).72,73 CML is

known to induce protein cross-linking contributing to diabetic

complications. Moreover, higher levels of oxidized low-density

lipoprotein (LDL) have been observed in type 2 diabetes and contribute

to macrovascular disease.74

Mitochondrial Morphology, Fission, and Fusion
Beyond, mitochondrial function, type 2 diabetes is associated with

changes in the size, number, and morphology of muscle mitochondria.

Biopsies of skeletal muscle from subjects with type 2 diabetes and obesity

reveal lower density of mitochondria and smaller size; size correlating to

whole body insulin sensitivity.5,75 There is also mitochondrial subtype

selectivity in muscle. Skeletal myocytes and cardiomyocytes contain two

populations of mitochondria: subsarcolemmal (SLM) and intermyofibrillar

(IMFM). Electron microscopy revealed reduced numbers of SLM

mitochondria in skeletal muscle of type 2 diabetic and obese subjects

associated with reduced electron transport activity per unit mitochondrial

DNA, suggesting functional impairment as well.75 It is believed that the

SLM contribute energy for membrane and transport processes while 

the IMFM contribute more to contractile function. Interestingly, type 2

diabetes is also associated with increased SLM lipid accumulation

compared with obese controls.76

Mitochondrial networking in the form of frequent fusion and fission

events may play a role in regulating β-cell function and sensitivity to

apoptosis. There is evidence that high nutrient exposure of islet β-cells

in vitro leads to arrest of fusion activity and fragmentation. Shifting the

dynamics to fusion by inhibiting fission seems to prevent β-cell

apoptosis.77 Fusion and fission depend on certain proteins including two

isoforms of mitofusin, which are involved in docking, and the

presenillin-associated rhomboid-like (PARL) protein, important for

morphologic integrity.78 There is now evidence that obesity in both

humans and rodents is associated with reduced mitofusin (MFN).79

Moreover, polymorphisms of PARL in humans are associated with

insulin resistance.80

Mitochondrial Calcium and the 
Pathogenesis of Diabetes
A large volume of literature links calcium flux to mitochondrial function.

Ionic calcium influx increases respiration and ATP formation, probably

by enhancing the activity of mitochondrial dehydrogenase enzymes and

stimulation of ATP synthase.81 However, whether alterations in calcium

handling are of primary importance in the pathology associated with

diabetes is not clear. Oliveira et al.82 reported that heart mitochondria

isolated from 21-day STZ-diabetic rats with severe hyperglycemia

demonstrated increased sensitivity to calcium-triggered reduction in
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membrane potential. Prevention of this by cyclosporin suggested that

this was due to greater susceptibility of these mitochondria to opening

of the mitochondrial permeability transition pore.82 There is evidence for

leakage of calcium from muscle sarcoplasmic reticulum stores in db/db

mice83 and impaired mitochondrial calcium transients in ob/ob mice.84,85

In islet β-cells, calcium is a critical mediator for respiration and

consequent ATP formation and for insulin release by a direct effect on

extrusion of the stored hormone from intracellular granules. As noted

above, impaired calcium signaling has been noted in islets of

hyperglycemic insulin-resistant MKR mice.54

Mitochondria of Multiple Cell Types and 
Type 2 Diabetes
Given the above considerations, we can ask how mitochondrial

dysfunction within different cell and tissue types might lead to 

type 2 diabetes or, if not directly causative, how mitochondrial

dysfunction could contribute to the progressive nature of diabetes and

its complications. Figure 3 represents a simplistic and hypothetical

overview of this process. Obviously, there is considerable detail to be

resolved. Hopefully, further understanding will lead to approaches 

that effectively target mitochondria within multiple tissues in a way that

mitigates the pathophysiology involved in the onset and progression of

type 2 diabetes. 

Therapeutic Considerations
Based on the above, therapy directed at mitochondria could prove an

effective way to prevent, treat and/or to minimize the complications of

diabetes (see Figure 4). Exercise increases mitochondrial biogenesis

through effects on PGC-186,87 and activates adenosine monophosphate

(AMP)-activated protein kinase (AMPK), which improves both glucose

and fat oxidation.86 A recent study revealed that aerobic exercise

training increased insulin sensitivity, maximal oxygen consumption, and

mitochondrial respiration in both type 2 diabetic subjects and obese

controls matched for age and body mass index (BMI).88 However, there

was no difference in these parameters between these groups. Calorie

restriction favors mitochondrial biogenesis, oxygen use, ATP formation,

and expression of SIRT1, which activates PGC1-α.89,90 There is also

evidence that n-3 polyunsaturated fatty acids activate AMPK, favoring

mitochondrial biogenesis and enhance lipid catabolism in adipose

tissue and liver, suppressing lipogenesis.91

Pharmacologic efforts to improve mitochondrial function go back to 

the 1930s when attempts were made to treat human obesity with the

mitochondrial chemical uncoupler dinitrophenol.92 Although quite

effective, this treatment was abandoned following cases of fulminant

liver failure. On the other hand, recent research has uncovered

additional targets that may prove amenable to therapies directed 

at mitochondrial function. The thiazolidinedione pioglitazone induces

mitochondrial biogenesis in adipose tissue as well as expression of

PGC-1α and genes in the fatty acid oxidation pathway.43 However,

somewhat paradoxically, thiazolidinediones are limited by a tendency

for weight gain due to increased fat,93 fluid retention, and heart failure.94

Metformin, most often used in the initial pharmacologic management of

type 2 diabetes, has mitigating effects on ROS production, activates

AMPK, and favors mitochondrial proliferation.95,96 In addition, there 

is evidence that angiotensin receptor blockers or inhibitors of

angiotensin-converting enzyme enhance mitochondrial biogenesis.97

Newer approaches may soon be available. Resveratrol, an ingredient in

red wines, is a polyphenolic SIRT1 activator which, at least in rodents,

improves insulin resistance, protects against diet-induced obesity,
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Figure 3: Detrimental Events Whereby Mitochondrial
Dysfunction in Islet β-cells and in Insulin-responsive
Tissues Leads to Deterioration of Insulin Secretion and
Insulin Action
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Figure 4: Molecular Targets for Mitochondrial Therapy
Directed at Diabetes, Insulin Resistance, and Obesity
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induces genes for oxidative phosphorylation, and activates PGC-1α.98–100

Recently, it has been reported that the adipokine apelin enhances

mitochondrial content in muscle by means independent of AMPK and

PGC-1α.101 It may also be possible to improve glucose utilization through

measures that inhibit mitochondrial uptake of long-chain acyl-CoA

molecules. Lipid suppression of glucose utilization is mitigated 

by etomoxir, an inhibitor of carnitine palmitoyltransferase 1, or by

knockdown of malonyl-CoA decarboxylase, an enzyme that promotes

mitochondrial β-oxidation by preventing malonyl-CoA-induced inhibition

of carnitine palmitoyl transferase 1 (CPT-I).28,102 Other targets potentially

amenable to pharmacologic manipulation include AMPK, which

enhances both glucose and fat oxidation103,104 and increases PGC-1α

favoring mitochondrial biogenesis;105,106 pyruvate dehydrogenase;107 or the

various shuttle mechanisms regulating uptake of TCA intermediates.108

Ubiquinone (coenzyme Q or CoQ) has antioxidant properties and is

widely available as a health supplement. Unfortunately, however, this

compound does not easily enter mitochondria. The endogenous

mitochondrial CoQ is localized to these organelles by virtue of its

synthesis within mitochondrial membranes. This problem has led to the

development of compounds linking agents such as redox forms of

coenzyme Q (ubiquinol and ubiquinone) or vitamin E to alkylated

triphenylphosphonium compounds. These are lipophilic cations avidly

taken up into the relatively negative mitochondrial matrix.109 Of note is

that ubiquinol, the reduced from of CoQ, does not directly scavenge

oxygen radicals but acts as an antioxidant in mitochondria both by

regeneration of vitamin E and by reacting with peroxyl radicals, serving

as a chain-breaking agent towards lipid peroxidation.110 In fact, we and

others111,112 have shown that mitochondrial-targeted coenzyme Q (mitoQ)

actually increases superoxide production when added directly to

isolated mitochondria, an effect that is mediated by the semiquinone

form of mitoQ generated during redox cycling of the compound. 

MitoQ also has metabolic effects when added to mitochondria, 

including uncoupling properties, so one can speculate that 

mitochondrial-targeted agents like coenzyme Q might be potentially

useful in treating obesity.113 Other approaches to mitochondrial-targeted

antioxidant therapy are under investigation. One approach involves

synthetic peptides with antioxidant properties. Certain peptides

containing tyrosine residues have been found to effectively scavenge

oxygen radicals and peroxynitrite and inhibit lipid peroxidation.114,115

Summary
Mitochondria have an important role in the pathophysiology of 

diabetes. Mitochondrial perturbations involve function, number,

morphology, and dynamics. Altered mitochondrial metabolism in part

explains the decrease in insulin sensitivity within muscle, liver, and

adipose tissue as well as defective β-cell insulin release, thus

contributing to the progressive nature of type 2 diabetes. Moreover,

ROS appear important in mediating oxidative damage to non-insulin-

sensitive target cells, contributing to the long-term complications of

diabetes. New treatment strategies directed at mitochondrial function

and ROS production should benefit type 2 diabetes and obesity. n
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