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TOUCH MEDICAL MEDIA

The Thr92AlaD2 Polymorphism May Play a Novel Role in Hypothyroidism
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Abstract
The type 2 deiodinase (D2) has an important role in hypothyroidism, where its ability to activate thyroid hormone provides justification for 

levothyroxine “monotherapy.” A prevalent polymorphism in D2, Thr92AlaD2, has been associated with improved well-being on “combination 

therapy” with T4+T3; the underlying mechanism is unclear as T4-to-T3 conversion appears normal. Novel studies indicate this might be a risk 

factor for neurodegenerative disease. If the relationship between Thr92AlaD2-expression and treatment preference is confirmed, personalized 

medicine may play a role in hypothyroidism.
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Extrathyroidal production of the active form of thyroid hormone, T3, via 

deiodination of thyroxine (T4) provides physiologic justification for the 

treatment of hypothyroidism with levothyroxine (l-T4) “monotherapy”;1 T3 

production outside of the thyroid gland is mediated largely by the type 2 

deiodinase (D2). l-T4-treated patients exhibit stable levels of serum T32  

and for decades clinicians have attributed this to adequate and consistent 

peripheral T4-to-T3 conversion.3,4 Accordingly, the majority of l-T4-treated 

patients achieve both clinical and biochemical euthyroidism, which 

is typically defined as normalization of the serum thyroid stimulating 

hormone (TSH).5,6 However, it has been recognized in more recent years 

that despite normalization of serum TSH, some patients suffer from 

residual hypothyroid symptoms and, in particular, cognitive complaints.7 

Given the high prevalence of hypothyroidism, which afflicts more than 

eight million Americans alone,8 that about 12 % of treated individuals 

remain symptomatic represents a considerable portion of the population.7 

Therefore, optimization of therapeutic response in hypothyroidism 

represents an important target for the public health.

Although l-T4-treated patients typically exhibit serum TSH, T4, and T3 levels 

within the normal range, this occurs at the cost of an elevated serum T4:T3 

ratio.9 With that being said, a minority of patients fail to achieve normal 

serum T3 levels.10,11 One hypothesis to explain residual symptomatology 

in l-T4-treated patients is localized hypothyroidism within a particular 

tissue, for example, the brain. D2 is abundantly expressed within this 

T3-target tissue, and therefore it is logical to consider that a defect in  

the D2 pathway could result in localized brain hypothyroidism. If this  

were the case, the ability of “combination” therapy (treatment with T4+T3-

containing regimens) to improve psychological parameters in some 

patients would be explained.12,13 However, superiority of combination 

therapy has not been demonstrated universally in clinical trials,5 leaving 

some to hypothesize that unique individual factors may characterize the 

subset of patients who do derive benefit from this therapeutic approach.

To this effect, a genetic factor has been associated with preference 

for combination therapy in hypothyroidism; patients with the Thr92Ala 

polymorphism in DIO2, the gene encoding D2, have demonstrated 

improved well-being when treated with combination therapy versus l-T4 

monotherapy in a large clinical trial.14 This single nucleotide polymorphism, 

rs225014, results in a single amino acid substitution within D2’s instability 

loop.15 Given that this substitution occurs at a residue that is distant from 

the catalytic active site, it is not necessarily surprising that Thr92AlaD2 

converts T4-to-T3 with normal kinetics when transiently expressed in 

cells.16,17 Similarly, these patients do not exhibit gene expression patterns 

consistent with hypothyroidism at the level of brain tissue,18 exhibit 

normal serum thyroid function parameters,17,19 and require equivalent 

doses of levothyroxine to normalize serum TSH levels.20,21

In addition to its association with treatment preference in hypothyroidism, 

the Thr92AlaD2 polymorphism has been associated with diverse 

conditions in population-based studies, including hypertension,22 insulin 

resistance,23,24 type 2 diabetes,25,26 bipolar disorder,27 mental retardation,28 

low IQ,29 recovery from lung injury,30 osteoarthritis,31–33 and increased bone 

turnover34 (see Figure 1). As intact thyroid hormone signaling has been 

demonstrated across models, this suggests that mechanisms aside from 

localized hypothyroidism are likely responsible for the clinical phenotype 

associated with Thr92AlaD2-expression.
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Translational studies have helped to define the molecular mechanism 

underlying the clinical phenotype associated with Thr92AlaD2-

expression—stable expression of the Thr92AlaD2 protein in a human 

cell model modified the cellular environment such that the polymorphic 

protein had a prolonged half-life and was aberrantly located in the Golgi 

apparatus, where it perturbed Golgi morphology.18 When samples of 

human temporal pole were studied, there was an overlap in the gene 

expression patterns compared with the cellular model, suggesting for 

the first time that these cellular alterations might be the cause of a 

tissue-specific dysfunction within a D2-expressing tissue. Specifically, the 

transcriptome of the human temporal pole exhibited gene expression 

pathways that are enriched in neurodegenerative diseases.18 The concept 

that Thr92AlaD2-expression confers a genetic profile in the human 

cerebral cortex congruent with diseases such as Huntington’s suggests 

that further characterization of the clinical phenotype associated with 

Thr92AlaD2-expression has the potential to transcend the thyroid field. 

Other D2-expressing tissues will also need to be studied to assess for 

tissue-independent patterns of transcriptional abnormalities. If carriers of 

the Thr92AlaD2 protein exhibit cellular perturbation throughout their D2-

expressing tissues, this could explain the association with diverse clinical 

conditions seen in genome-wide association studies.

The concept of tissue-specific dysfunction in Thr92AlaD2 carriers should 

be explored in clinical trials and, in parallel, preference for combination 

therapy in hypothyroid Thr92AlaD2 carriers will need to be rigorously 

confirmed. If confirmed, translational studies will be needed to underpin 

the mechanism underscoring this predilection. Of course, this represents 

a significant frontier for future studies, but the potential for a role of 

personalized medicine in the treatment of hypothyroidism to improve 

the lives of millions of patients is of scientific and clinical priority. n
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