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C holesterol is an essential component of cell membranes, and during the past several years, diabetes researchers have found that 
membrane cholesterol levels in adipocytes, skeletal muscle fibers and pancreatic beta cells influence insulin action and insulin secretion. 
Consequently, it is thought that dysregulated cell cholesterol homeostasis could represent a determinant of type 2 diabetes (T2D). Recent 

clinical findings compellingly add to this notion by finding increased T2D susceptibility in individuals with alterations in a variety of cholesterol 
metabolism genes. While it remains imperfectly understood how statins influence glucose metabolism, the fact that they display an influence 
on blood glucose levels and diabetes susceptibility seems to intensify the emerging importance of understanding cellular cholesterol in glucose 
metabolism. Taking this into account, this review first presents cell system and animal model findings that demonstrate the negative impact of 
cellular cholesterol accumulation or diminution on insulin action and insulin secretion. With this framework, a description of how changes in 
cholesterol metabolism genes are associated with T2D susceptibility will be presented. In addition, the connection between statins and T2D risk 
will be reviewed with expanded information on pitavastatin, a newer statin medication that displays actions favoring metabolic health.
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In a series of recent studies, insulin-stimulated glucose disposal in animal 

models and human subjects was found to be inversely related to plasma 

membrane cholesterol content. Aberrantly increased plasma membrane 

cholesterol is seen uniformly in insulin-resistant mice, rats, swine, and 

humans, and normalization restores insulin responsivity.1–4 Mechanistic 

studies in clonal cells, as well as in fat and skeletal muscle tissue 

demonstrate that excess plasma membrane cholesterol reduces cortical 

filamentous actin (F-actin), which is essential for glucose transporter type 

4 (GLUT4) regulation by insulin. In addition to this negative consequence 

of excess plasma membrane cholesterol on insulin action, Llanos et al. 

found the ryanodine receptor calcium signals, which are important for 

GLUT4 regulation, are negatively affected by increased skeletal muscle 

membrane cholesterol.4 Interestingly, exercise known to ward off diabetes 

development has recently been shown to prevent plasma membrane 

cholesterol accumulation, cortical actin filament loss, and insulin resistance 

in mice fed a western-style high-fat diet.5 While F-actin and calcium signaling 

defects that manifest in cholesterol-laden plasma membrane seem to 

represent critical determinates of impaired GLUT4 regulation and glucose 

transport, the precise mechanisms of cellular cholesterol accumulation 

and insulin resistance remain elusive. In fact, Parpal et al. demonstrated 

that progressive cholesterol depletion of 3T3-L1 adipocytes with beta-

cyclodextrin gradually destroyed plasma membrane caveolae structures 

and concomitantly diminished insulin-stimulated glucose transport, in 

effect making cells insulin-resistant.6 The importance of this in metabolic 

health is that upsurges or plunges in plasma membrane cholesterol both 
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adversely affect insulin action. Interestingly, a set of pancreatic beta (β)-cell 

studies also demonstrate a strikingly similar damaging impact of too much 

or too little plasma membrane cholesterol on insulin secretion.

In 2007, Brunham et al. studied mice with a specific inactivation of Abca1 

in β cells.7 Abca1 encodes the adenosine 5’-triphosphate (ATP)-binding 

cassette transporter subfamily A member 1 (ABCA1) that mediates the 

rate-limiting step in high-density lipoprotein (HDL) biogenesis by effluxing 

cellular cholesterol to apolipoprotein A1 (ApoA1). Their deletion of β-cell 

ABCA1 increased cholesterol in these cells and impaired insulin secretion, 

suggesting that β-cell cholesterol accumulation may contribute to β-cell 

dysfunction. Subsequent investigation found that islets lacking the related 

cholesterol transporter ABCG1 also had impaired glucose-stimulated 

insulin secretion (GSIS).8 Also, somewhat expectedly, it was found that 

losses of both ABCA1 and ABCG1 induced an exacerbated disturbance in 

β-cell function compared with loss of either transporter alone.9 Another 

line of investigation revealed elevated islet cholesterol levels and impaired 

GSIS in ApoE-deficient mice.10 Further experimental manipulation of β-cell 

cholesterol levels in this study demonstrated that excess membrane 

cholesterol impairs GSIS, whereas cholesterol normalization enhances 

GSIS.10 Interestingly, in the context of what is seen in adipose tissue and 

skeletal muscle cells, it was also found that cholesterol-overloaded 

β cells exhibit diminished glucose-induced actin reorganization, membrane 

depolarization, and insulin secretion.11 In terms of human β-cell health, 

infusion of reconstituted HDL in patients with T2D improves β-cell function, 

whereas carriers of loss-of-function mutations in ABCA1 have impaired 

β-cell function.12 Of note, like extreme plunges in plasma membrane 

cholesterol negatively impacting insulin action, Tsuchiya et al. found that 

cholesterol composition of insulin secretory granule (SG) membrane is 

crucial for GSIS and SG formation.13

Together, these studies support the case that changes in cellular cholesterol 

metabolism may represent an etiological factor of T2D development. Next, 

we summarize genetic studies that come to the same conclusion. Also, 

new data suggesting how caloric excess may fuel cholesterol accumulation 

are highlighted. Finally, we present data and perspective on how statins 

may mechanistically influence glucose metabolism.

Cholesterol genes and diabetes
Several human genetic studies suggest a relationship between increased 

cellular cholesterol levels and alterations in glycemia. Ding et al. quantified 

the transcriptome and epigenome in monocytes from 1,264 participants 

in the Multi-Ethnic Study of Atherosclerosis, and found that alterations in 

a network of coexpressed cholesterol metabolism genes were associated 

with T2D.14 This network included 11 genes related to sterol influx (↑LDLR, 

↓MYLIP), synthesis (↑SCD, FADS1, HMGCS1, FDFT1, SQLE, CYP51A1, 

SC4MOL), and efflux (↓ABCA1, ABCG1), producing a molecular profile 

expected to increase intracellular cholesterol. Recent examination of multi-

tissue transcriptomes and epigenomes suggest that these cholesterol 

metabolism genes are similarly altered in human adipose tissue.15,16 

Moreover, obesity-driven modifications in the epigenome predicted T2D, 

independent of conventional risk factors such as body mass index (BMI) 

and glycemia.16 Many of the methylation sites responsive to obesity were 

involved in lipid and lipoprotein metabolism. Identified in this analysis was 

a strong relationship between the methylation of ABCG1 and T2D.16 As 

expanded on below, genetic mutations resulting in diminished circulatory 

levels of both low-density and high-density lipoproteins are significantly 

associated with T2D.17 Of interest is that these changes could have 

significant bearing on cellular cholesterol levels and thus possibly explain 

the increased T2D risk.

Low-density lipoprotein metabolism and 
type 2 diabetes
Low-density lipoprotein (LDL) receptors (LDLRs) mediate the cellular 

uptake of LDL-cholesterol (LDL-C) from the circulation. Myosin regulatory 

light chain-interacting protein (MYLIP) promotes LDLR degradation. Thus, 

increased LDLR gene expression and/or decreased MYLIP gene expression 

would favor diabetogenic LDLR-mediated cholesterol delivery to adipocytes, 

pancreatic β-cells, and skeletal muscle fibers. Consistent with this removal 

of LDL-C from the blood, lower circulating LDL-C levels have recently been 

found to be significantly associated with T2D susceptibility.17 Interestingly, 

unlike ubiquitous MYLIP tissue expression, proprotein convertase subtilisin/

kexin type 9 (PCSK9), which also promotes LDLR degradation, is produced 

predominantly in the liver. Therefore, PCSK9 inhibitors, unlike the genetic 

loss of MYLIP, would not be expected to increase cholesterol levels in non-

hepatic cells. Whether PCSK9 inhibitors, however, increase T2D risk is not 

yet fully known.18 Contrariwise to increased LDLRs and decreased LDL-C 

associating with T2D, loss-of-function mutations in the LDLR, as seen in 

familial hypercholesterolemia (FH), protects individuals from T2D risk.19 

In fact, the odds of developing T2D decreased linearly as the severity of 

FH increased,19 or, from another prospective, as cellular ability to uptake 

cholesterol decreased.

High-density lipoprotein metabolism and 
type 2 diabetes
A significant association between genetically determined lower HDL-C 

and T2D has also been found.17 Unlike the LDLs that deliver cholesterol to 

cells, HDLs remove cholesterol from cells. Many steps are involved in HDL 

metabolism and deserve an overview for discussion on HDL metabolism 

changes as a possible contributor to T2D. Briefly, HDLs originate from the 

liver, intestine, chylomicron (CM), and very-low-density lipoprotein (VLDL). 

The liver secretes lipid-poor ApoA1 called nascent or precursor HDL, 

the intestine directly synthesizes these particles, and lipoprotein lipase 

(LPL)-mediated lipolysis of CMs and VLDLs releases surface ApoA1 and 

phospholipids that also generate nascent HDLs. This later CM and VLDL-

generated ApoA1 production is facilitated by phospholipid transfer protein 

(PLTP). These liver-, intestine-, CM-, and VLDL-derived nascent HDLs 

accept free cholesterol from cell membranes with excess cholesterol. 

This transfer of free cholesterol to HDLs is mediated by ABCA1, the class 

B, type 1 scavenger receptor (SR-B1), as well as other cell surface proteins 

(e.g., ABCG1). Following the transfer of free cholesterol to the surface of 

the nascent HDLs, the free cholesterol is esterified by lecithin: cholesterol 

acyltransferase (LCAT) and the formed cholesterol esters move away 

from the surface to a cholesterol ester-rich core forming a small, 

spherical, mature HDL particle (designated HDL3). Through this same 

LCAT-mediated process HDL3 accepts cellular free cholesterol, grows in 

size, and matures to a form designated as HDL2. Cholesterol ester transfer 

protein (CETP) facilitates the transfer of cholesterol esters from HDL2 to 

the lower density lipoproteins (VLDL, IDL, LDL) that transit to the liver for 

excretion. As the HDL2 particles becomes devoid of cholesterol esters, 

hepatic lipase hydrolyzes triglycerides and phospholipids that the HDL2 

molecule accumulated and this reconverts HDL2 to HDL3. The regenerated 

HDL3 cycles back through this pathway of accepting free cholesterol and 

transitioning to HDL2 and then back to HDL3.
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Genetic mutations in several of the above mentioned HDL-regulatory 

system components tend to increase a carrier’s risk for T2D.  

For example, Lara-Riegos et al. found T2D susceptibility in Mexican 

Mestizos was associated with a loss-of-function mutation in ABCA1;20 

however, genetic variation in ABCA1 was not found to predict T2D in 

other populations.21 Moreover, mutation in genes for ApoA1, CETP, 

SR-B1, and Niemann-Pick disease, type C1 (NPC1) tend to increase a 

carrier’s risk for T2D.22–26 Loss-of-function mutations in ApoA1, CETP, 

and SR-B1 would negatively impact HDL functionality in accepting 

free cholesterol from cells with excess cholesterol. Efflux mutations 

in chromosome 9q31 in people with Tangier disease lead to defective 

ABCA1 transporters and many of these patients manifest impairments 

in insulin action and insulin secretion.27 Similarly, a loss-of-function 

mutation in NPC1, a gene mutated in Niemann-Pick disease that 

disrupts intracellular cholesterol transport and accumulation in late 

endosomes and lysosomes, indirectly impedes ABCA1-mediated 

cholesterol efflux by sequestering this cholesterol transporter in the 

endosomal compartment.28 A similar trapping of ABCA1 has been 

reported in insulin-resistant 3T3-L1 adipocytes with a cholesterol-laden 

plasma membrane where it was also found that endosomal membrane 

cholesterol was increased with ABCA1, away from its functional site of 

free cholesterol transfer to ApoA1.29

HMG-CoA reductase regulation and T2D
While genetic-related decelerations in HDL-mediated cellular cholesterol 

efflux and/or accelerations in LDL-mediated delivery as a basis of 

T2D warrants further investigation, emerging evidence also suggests 

diabetogenic increases in cellular cholesterol may arise from caloric 

excess associated increases in cholesterol biosynthesis. For example, 

a series of recent in vitro studies have found that excess glucose flux 

through the hexosamine biosynthesis pathway (HBP), a pathway known 

to impair insulin action in animals and humans, increases cellular 

membrane cholesterol. Mechanistically, HBP-mediated increases in 

O-linked N-acetylglucosamine modification of the transcription factor Sp1 

triggers the transcriptional activation of HMG-CoA reductase (HMGR), the 

rate-limiting enzyme in cholesterol biosynthesis.1,3,29,30 This HBP-induced 

cholesterolgenic transcriptional response increases plasma membrane 

cholesterol reducing cortical F-actin and insulin-stimulated GLUT4-

mediated glucose transport, as well as increases endosomal membrane 

cholesterol that sequesters ABCA1 and thus, suppresses cholesterol 

efflux capacity of the insulin resistant cells.1,3,29,30 Strikingly, inhibition 

of the HBP, or Sp1 binding to DNA, blocked membrane cholesterol 

accumulation, F-actin loss, and the dysregulation in both GLUT4-mediated 

glucose transport and ABCA1/ApoA1-mediated cholesterol efflux.1,3,29,30 

Although it is not known whether excess cholesterol content measured 

in insulin-resistant animal and human muscles results from increased 

HBP activity, this pathway is documented to cause insulin resistance in 

animal models and human subjects, and is increased in skeletal muscle 

of patients with T2D.31 Considering that an increase in HBP activity, which 

normally accounts for 2% of total glucose flux, to 4–6% impairs insulin 

action, aberrant cholesterol biosynthesis could represent an imperfectly 

understood mechanism of HBP-mediated insulin resistance.32 Also, 

considering that at the level of the pancreatic β-cell, there is evidence 

that hyperglycemia itself can lead to many of the defects in insulin 

secretion that are observed in T2D,32 future studies of the role of this 

pathway in cholesterol accumulation/toxicity in adipocytes, pancreatic 

β cells, and skeletal muscle in vivo are clearly indicated.

Challenges, opportunities, and lessons from 
statin therapy
Despite the unequivocal importance of cholesterol-lowering therapy in 

preventing cardiovascular disease, there is a modest risk of T2D with statin 

therapy. With this risk, a significant challenge and value exist in untangling 

the relationship between statins and glucose metabolism. Interestingly, 

in the context of this review, nearly two decades of randomized control 

trials and meta-analyses suggest that the risk of T2D is not the same 

among statins. Furthermore, recent network meta-analyses,33 as well as 

a Delphi study that ascertained the opinion of primary care physicians 

and specialists with experience in treating dyslipidemia,34 have ranked 

different statins in order of diabetogenicity, with atorvastatin, simvastatin, 

and rosuvastatin being the most diabetogenic; lovastatin and fluvastatin 

having an intermediate risk; and pravastatin and pitavastatin having the 

lowest diabetogenicity. In fact, basic and clinical data suggest that these 

least diabetogenic statins, especially pitavastatin, may even exhibit a 

positive effect on glucose metabolism.35–43 Intricately layered with our full 

understanding of why and how statins negatively or positively impact 

glycemic health is an array of factors including patient characteristics and 

integrative control mechanisms of cholesterol regulation. It is also now 

recognized that high-potency, high-dose, and long-treatment durations  

add to the diabetogenicity of statins, however, pitavastatin, a fully synthetic 

and high-potency statin,44 is a notable exception that displays many  

cellular cholesterol homeostatic antidiabetic attributes, which will be 

reviewed below.

It is first important to note, however, that the diabetogenicity associated 

with statins as a class corresponds with studies that have found loss-of-

function mutations in the HMGR gene to increase T2D risk.45 Cholesterol 

biosynthesis pathway intermediates, reduced with HMGR inhibition, 

are essential for signaling and transport processes that mediate insulin-

stimulated GLUT4 translocation and glucose-stimulated insulin secretory 

granule trafficking. Brault et al. has recently reviewed studies demonstrating 

the impact statins have on pathways mediated by intermediates of the 

cholesterol synthesis pathway.46 This discussion focuses on the potential 

of statins to directly impact the delicate balance of cellular cholesterol. 

For example, studies introduced earlier by Parpal et al. and Tsuchiya et al. 

document the necessity of cellular cholesterol for insulin signaling and 

insulin secretory granule formation.6,13 Reduced cholesterol synthesis could 

decrease cellular cholesterol causing cells to respond in a similar manner.

Intuitively, we would expect reduced membrane cholesterol to result from 

HMGR inhibition by statins. However, there is little in vivo documentation of 

statin effects on membrane cholesterol content. It is also noteworthy that 

inhibition of cholesterol biosynthesis causes a cascade of compensatory 

responses intended to maintain a functional level of membrane cholesterol 

and cholesterol biosynthetic intermediates. There is a possibility that 

compensation increases cellular cholesterol by turning up cholesterol 

influx and decreasing efflux. For example, like the upregulation of LDLRs 

that occurs in the liver with HMGR inhibition by statins, muscle LDLRs and 

LDL-C uptake are increased in mice treated with high doses of simvastatin.47 

It has also been found that skeletal muscle LDL-C uptake is increased in 

statin-treated mice overexpressing LPL in skeletal muscle.47 These data 

suggest that LPL (the primary enzyme for intravascular hydrolysis of 

triglyceride [TG]), could also be an important mediator of skeletal muscle 

cholesterol uptake by increasing the availability of LDLC from VLDL/IDL 

conversion. Notably, statins increase LPL serum mass and activity in T2D.48–50 
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Perhaps these findings offer an alternative explanation as to why statins 

increase, albeit modestly, the risk of T2D.33,51–55 Interestingly, LPL activity was 

not increased in guinea pigs treated with pitavastatin,56 consistent with its 

neutral effect on blood glucose or T2D risk, however, increased mRNA/

protein expression levels of LPL have been reported in 3T3-L1 adipocytes 

and L6 myotubes treated with pitavastatin, suggesting that this statin may 

have this capacity.48,57

Another facet of HMGR inhibition is cellular compensatory mechanisms 

which appear to be mediated by increased transcription of SREBPs and 

two associated microRNAs (miR), miR-33a and miR-33b.58,59 In response to 

statins, SREBPs and miR-33a/b increase HMGR and LDLR, and decrease 

ABCA1, ABCG1, NPC1, and AMPK.58,59 These metabolic changes are 

advantageous for reducing circulating blood cholesterol, although an 

exaggerated response in adipocytes, pancreatic β-cells, or skeletal muscle 

fibers could have deleterious consequences on glucose regulation. While 

these possible adverse side-effects of HMGR inhibition could explain the 

greater diabetogenicity of atorvastatin, simvastatin, and rosuvastatin 

that generally promote, especially at high-doses, an increased risk of 

T2D development,53,55,60 these statins have also been shown to improve 

insulin sensitivity in some populations with diabetes.61–69 Similarly, although 

the preponderance of studies with pravastatin suggest that this statin 

reduces T2D risk, a significant relative increase in diabetes incidence has 

been observed in elderly patients.70 Two recent meta-analyses of large 

randomized, controlled trials found that either being older (average age >60 

years) or being treated with intensive-dose statin therapy leads to a higher 

incidence of new-onset diabetes.53,55

A start to understanding how statins could have beneficial, neutral, or 

adverse effects on glucose metabolism could be a close examination 

of pitavastatin’s qualities which make this statin neutral to, or protective 

of, glucose disturbances, and T2D. Pitavastatin was demonstrated to 

have neutral effects on glucose homeostasis in patients with metabolic 

syndrome in the CAPTAIN and PREVAIL US trials, independent of its efficacy 

in reducing atherogenic lipoprotein levels.71 In a comparison of pitavastatin 

and atorvastatin in Japanese patients with hypercholesterolemia (the 

CHIBA study; NCT02193698), waist circumference, body weight, and 

body mass index were all significantly correlated with percent reduction 

of non-HDL-C in the atorvastatin group, whereas pitavastatin showed 

consistent reduction of non-HDL-C, regardless of body size.72 In addition, in 

a prospective randomized controlled trial of 1,260 patients with impaired 

glucose tolerance, the J-PREDICT study (NCT00301392), pitavastatin was 

shown to have a neutral effect and possibly even a protective effect against 

the development of diabetes.73 Meta-analysis of the largest contemporary 

dataset involving 4,815 participants that assessed the impact of pitavastatin 

on glycemia and the risk of diabetes found that pitavastatin did not 

adversely affect glucose metabolism or the development of diabetes in 

comparison with placebo.74 This was also determined in a recent network 

analysis that found pitavastatin to be the least diabetogenic. This analysis 

included 29 trials in which 163,039 participants had been randomized; 

among these, 141,863 were non-diabetic patients. While statins, as a 

class, significantly increased the likelihood of developing diabetes by 12% 

(pooled odds ratio [OR] 1.12, 95% confidence interval [CI] 1.05–1.21, I2 36%, 

p=0.002), the OR of pitavastatin was the lowest (OR 0.74, 95% CI 0.31–1.77); 

whereas the highest risk was associated with atorvastatin 80 mg (OR 1.34, 

95%CI 1.14–1.57). Several other trials also support limited, if any, adverse 

effects of pitavastatin in patients with metabolic syndrome (CHIBA72 and 

CAPTAIN/PREVAIL-US trials;71 NCT01256476), or in those with impaired 

glucose tolerance (J-PREDICT; NCT00301392).73

Unlike other statin drugs, pitavastatin has been demonstrated to 

consistently produce significantly greater HDL-C elevations that are 

maintained, or increased, over time.41,74–77 This action may counterbalance 

any unwanted upregulation of LDLRs in skeletal muscle by augmenting 

ABCA1/ApoA1-mediated cholesterol efflux. This key process in restoring 

cellular cholesterol balance may also be enhanced by increased ApoA1 

generation. Maejima et al. found that pitavastatin efficiently increases 

ApoA1 in culture medium of HepG2 cells by promoting ApoA1 production 

through inhibition of HMGR, suppression of Rho activity, and by protecting 

ApoA1 from catabolism through ABCA1 induction and lipidation of ApoA1.78 

Interestingly, endothelial lipase (EL), a relatively recent addition to the 

triglyceride lipase gene family, is a major determinant of HDL-C metabolism. 

This lipase participates in HDL-C metabolism by promoting the turnover of 

HDL-C components and increasing the catabolism of ApoA1. A recent study 

by Kojima et al. found that pitavastatin suppressed basal and stimulated EL 

expression in cultured endothelial cells and mouse tissues.79 Furthermore, 

in that study plasma EL concentrations in human subjects were found 

to be negatively associated with plasma HDL-C levels in patients with 

cardiovascular diseases, and pitavastatin treatment reduced plasma EL 

levels and increased HDL-C levels in patients with hypercholesterolaemia.79 

Whether other statins have this capacity to concomitantly increase key 

components of the reverse cholesterol transport pathway to ameliorate 

cellular cholesterol toxicity is unknown, yet perhaps this explains the 

unique relationship between pitavastatin and glucose.

Pitavastatin also has several other pharmacological features that translate 

into a broad range of anti-diabetic actions. For example, altered adipokine 

levels (↓adiponectin, ↑resistin) and inflammatory factors (↑TNFα, ↑IL-6), 

as well as oxidative stress, mitochondrial dysfunction and ER stress are 

implicated in obesity-associated insulin resistance via their disruptive 

actions on insulin signaling.80 Note that the loss of insulin signaling 

induced by these obesity-associated changes may manifest later in T2D 

development, as an emerging view is that the onset of insulin resistance is 

not associated with defective insulin signaling.3,81,82 Regardless, pitavastatin 

administration has been found to significantly decrease human serum 

resistin levels.83 This effect of lowering resistin was also measured in a 

human breast cancer cell line.84 In that study, pitavastatin inhibited the 

proliferation and suppressed the nuclear expression of NF-κB p65 induced 

by TNF-α, an inflammatory pathway that contributes to insulin resistance.80 

Several clinical studies have also found that pitavastatin possesses an 

adiponectin-increasing effect in hyperlipidemic patients with and without 

T2D.85–90 Adiponectin is a protein with antiatherosclerotic, anti-inflammatory, 

and antidiabetogenic properties exerted on liver, skeletal muscle, adipose 

tissue and pancreatic β-cells.90 Mechanistically, adiponectin stimulates 

AMPK, a kinase that suppresses energy-consuming pathways such as 

hexosamine and cholesterol biosynthesis.91–93 We have found that AMPK 

stimulation improves GLUT4-mediated glucose transport and ABCA1/

ApoA1-mediated cholesterol efflux from insulin-resistant 3T3-L1 adipocytes 

via lowering membrane cholesterol levels.2,29,94

Future directions
The studies cited point to crucially important aspects of cellular 

cholesterol regulation on blood glucose control. Mechanistically, cell 

data suggest that the HBP may funnel excess glucose into cholesterol 
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biosynthesis, however, whether this occurs in vivo is not known. An 

interesting perspective regarding this occurring in adipose tissue is that 

membrane cholesterol accumulation would permit cell enlargement and, 

over time, perhaps hypertrophic obesity. Interestingly, this cholesterol-

laden membrane would also have defects in insulin-regulation of glucose 

transport, yet perhaps not in lipid storage. At the same time, this HBP-

mediated transcriptional cholesterolgenic response in skeletal muscle 

also impairs glucose transport regulation by insulin and in a tissue 

responsible for the majority of blood glucose disposal. Whether an 

early aspect of pancreatic β-cell failure also results from HBP-mediated 

cholesterol biosynthesis/accumulation is not known. An interesting 

possibility is that obesity, insulin resistance, and pancreatic β-cell failure 

arise simultaneously from a defect in cholesterol regulation. This scenario 

could explain how body mass appears to impact statin diabetogenicity. 

For example, an observation made in the Women’s Health Initiative (WHI) 

study was that there was a greater risk for statin-induced new-onset 

diabetes in females with a BMI lower than 25.0 kg/m2 compared with 

those with a BMI of 30.0 kg/m2 or higher.95 Although the WHI study was 

an observational study, it suggests, somewhat counterintuitively, that a 

leaner phenotype may be associated with a greater risk, and this may 

be relevant in the context of the HBP/cholesterol response model. For 

instance, given that a patient’s BMI likely reflects his/her eating/lifestyle 

habits, a BMI lower than 25.0 kg/m2 would likely be associated with 

normal cellular HBP activity and a cellular cholesterol status that may be 

vulnerable to statin therapy for reasons already detailed. Similarly, Daido 

et al. found that pitavastatin administration decreased fasting blood 

glucose levels in a subgroup of Japanese patients with a BMI of 25 kg/m2 or 

higher.41 This factor was not found to differ before and after administration 

of pitavastatin in overall analysis of all the subjects. Therefore, a precise 

cellular and molecular understanding of cholesterol-glucose interactions 

as they relate to metabolic health needs to be evaluated in the setting 

of a range of BMIs. Moreover, a clinical consideration is that lifestyle and 

many pharmacological interventions apparently mediate improvement in 

glucose regulation via increasing AMPK activity.

Conclusions
Mechanistically, research summarized in this review suggests that caloric 

excess modifies nutrient sensing pathways to favor cellular cholesterol 

accumulation. The accumulation of cellular cholesterol in turn alters 

muscle, adipose, and β-cell homeostasis, promoting insulin resistance 

and pancreatic β-cell failure. The human genetics studies cited clearly 

demonstrate that obesity drives epigenome and transcriptome changes 

in cholesterol metabolism, which significantly predispose people to T2D. 

Statins as a class, like caloric excess, modify cholesterol pathways in a 

manner that has the potential to drive cellular cholesterol accumulation. 

On the other hand, pitavastatin seems unique in this regard as it favorably 

engages pathways that not only lower blood cholesterol, but also excess 

cellular cholesterol. 
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