Cost-effectiveness Analysis of a Flash Glucose Monitoring System for Patients with Type 1 Diabetes Receiving Intensive Insulin Treatment in Sweden

S Pinar Bilir,1 Richard Hellmund,2 Beth Wehler,1 Huimin Li,1 Julie Munakata1 and Mark Lamotte5

Flash glucose monitoring – an alternative to traditional self-monitoring of blood glucose (SMBG) – prevents hypoglycaemic events without impacting glycated haemoglobin (HbA1c).21 Given the potential benefits, this study assessed the cost-effectiveness of using flash monitoring versus SMBG alone in patients with type 1 diabetes (T1D) receiving intensive insulin treatment in Sweden.

Methods: This study used the IQVIA CORE Diabetes Model (IQVIA CDM, v9.0) to simulate the impact of flash monitoring versus SMBG over 50 years from the Swedish societal perspective. Trial data informed cohort data, intervention effects, and resource utilisation; literature and Tandvårdssäkerhetsförbundet (TUV) sources informed utilities and costs. Scenario analyses explored the effect of key base case assumptions. Results: In base case analysis, direct medical costs for flash monitor use were SEK1,222,333 versus SEK989,051 for SMBG use. Flash monitoring led to 0.80 additional quality-adjusted life years (QALYs; 13.26 versus 12.46 SMBG) for an incremental cost effectiveness ratio (ICER) of SEK291,130/QALY. ICERs for all scenarios remained under SEK400,000/QALY. Conclusion: Hypoglycaemia and health utility benefits due to flash glucose monitoring may translate into economic value compared to SMBG. With robust results across scenario analyses, flash monitoring may be considered cost-effective in a Swedish population of T1D intensive insulin users.

Keywords
Type 1 diabetes, glucose monitoring, cost, cost analysis, economic analysis

Disclosure: Richard Hellmund is a full-time employee of Abbott Diabetes Care and is a stock holder. S Pinar Bilir, Huimin Li, Julie Munakata, Beth Wehler and Mark Lamotte are employed by IQVIA, Inc, which received payment from Abbott Diabetes Care to provide health economic consulting services.

Compliance with Ethics: All procedures were followed in accordance with the responsible committee on human experimentation and with the Helsinki Declaration of 1975 and subsequent revisions. Informed consent was received from the patient involved in this case study.

Authorship: All named authors meet the criteria of the International Committee of Medical Journal Editors for authorship for this manuscript, take responsibility for the integrity of the work as a whole and have given final approval for the version to be published.

Open Access: This article is published under the Creative Commons Attribution Noncommercial License, which permits any non-commercial use, distribution, adaptation and reproduction provided the original author(s) and source are given appropriate credit. © The Authors 2018.

Received: 7 June 2018
Accepted: 31 July 2018
Citation: European Endocrinology, 2018;14(2):73–9
Corresponding Author: S. Pinar Bilir, IQVIA, 425 Market St, Floor 7, San Francisco CA 94105 USA E: pinar.bilir@iqvia.com

Funding: This work was supported by Abbott Diabetes Care.
The IMPACT trial was a 6-month, multicentre randomised controlled trial of the flash monitoring system versus SMBG in adults with well-controlled T1D (HbA1c ≤7.5% [58 mmol/mol]) using multiple daily injection insulin therapy or continuous subcutaneous insulin infusion and testing glucose levels at least 10 times/week. The study found a 25.8% reduction in favour of flash monitoring in number of hypoglycaemic events (<70 mg/dL [3.9 mmol/L]) without changing HbA1c. Given potential clinical benefits of intervention, this study sought to assess the value of using flash monitoring instead of SMBG alone through cost-effectiveness evaluation in patients with T1D receiving intensive insulin treatment in Sweden.

Research design and methods
The present study was performed using the IQVIA Core Diabetes Model version 9.0 (IQVIA CDM).

IQVIA Core Diabetes Model
The IQVIA CDM is a non-product specific internet application to assess long-term health outcomes and economic consequences of interventions for T1D or T2D. The underlying mathematical engine consists of a series of diabetes-complication sub-modules that combine Markov techniques with Monte Carlo simulation and run simultaneously to capture comorbidities and outcomes associated with treatments of interest. These submodules are permitted to interact and each patient profile is updated at the end of each 1-year cycle to account for events across all submodules. The model captures differences in life expectancy, quality adjusted life years (QALYs), costs, cumulative incidences of complications due to adverse event-related intervention effects as well as HbA1c levels and other physiological parameters that affect risks of major diabetes complications. The model has been published previously in detail and has been extensively validated against clinical and epidemiological studies.

In the model, changes in physiological parameters (e.g. HbA1c, blood pressure, weight, lipid parameters) are entered and translated into long-term microvascular and macrovascular complications based on specific risk equations derived from landmark studies like the Diabetes Control and Complications Trial and its extension Epidemiology of Diabetes Interventions and Complications in T1D. Most important for this analysis, however, is the hypoglycaemia module that considers three severity levels as well as diurnal versus nocturnal status. Severe hypoglycaemic events may require third-party medical assistance (SHE2s) or third-party non-medical assistance (SHE1s). The model also considers non-severe hypoglycaemic events (NSHEs).

Analyses took a Swedish payer perspective, evaluating costs and effects over a 50-year horizon, intended to capture a lifetime (e.g. <1% of the full cohort will remain alive) from the age at model entry (approximately 43.7 years). Swedish non-specific mortality information derived from WHO was included. Costs and effects were discounted at 3%. All analyses were run with 1,000 patients for 1,000 iterations.

Model inputs
Baseline characteristics
The model cohort was designed to represent the IMPACT trial population (Table 1). Some cohort characteristics were unavailable from IMPACT; published sources were used to supplement IMPACT cohort data with T1D population estimates.

Intervention effects
Intervention effects for T1D were based on data from IMPACT and captured in Table 2. No significant differences were seen in the evolution of HbA1c between the two treatment arms in the IMPACT study, so an HbA1c increase of 0.12% (standard deviation [SD] 0.45%); 1.32 mmol/mol [SD 4.95]) compared to baseline was included for both flash monitoring and SMBG. NSHEs were populated using data from the IMPACT trial. The NSHE rate for the SMBG treatment arm was based on baseline symptomatic hypoglycaemia event data as a proxy for events below 70 mg/dL. The NSHE rate for the flash monitor arm was calculated by adjusting the baseline rate by percentage difference in events between SMBG and flash glucose monitoring over the study period (25.5% decrease in daytime and 33.2% decrease in nocturnal events).

Table 1: Cohort characteristics

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Default value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start age (years, mean [SD])</td>
<td>43.7 (13.9)</td>
<td>Abbotts Diabetes Care, 2016</td>
</tr>
<tr>
<td>Duration of diabetes (years, mean [SD])</td>
<td>22.0 (12.0)</td>
<td>Hayes et al., 2013</td>
</tr>
<tr>
<td>Male (%)</td>
<td>56.9%</td>
<td>Hayes et al., 2013</td>
</tr>
</tbody>
</table>

Baseline risk factors

HbA1c (% mean [SD])	6.78 (0.58)	Hayes et al., 2013
Systolic blood pressure (mmHg, mean [SD])	126.0 (15.0)	Hayes et al., 2013
Total cholesterol (mg/dL, mean [SD])	193.0 (38.0)	Hayes et al., 2013
HDL (mg/dL, mean [SD])	72.0 (20.0)	Hayes et al., 2013
LDL (mg/dL, mean [SD])	106.0 (33.0)	Hayes et al., 2013
Triglycerides (mg/dL, mean [SD])	76.0 (45.0)	Hayes et al., 2013
BMI (mean [SD])	25.0 (3.6)	Hayes et al., 2013
eGFR (mean [SD])	91.7 (20.1)	Nathan et al., 2014
Haemoglobin (mean, [SD])	14.5 (0.0)	Hayes et al., 2013
WBC (mean [SD])	6.8 (0.0)	Paterson et al., 2007
Heart rate (bpm, mean [SD])	68.0 (11.0)	Paterson et al., 2007
Proportion smoker (%)	14.0%	Hayes et al., 2013
Cigarettes/day	1	Hayes et al., 2013
Alcohol consumption (oz/week)	1.58	Hayes et al., 2013

Racial characteristics (%)

<table>
<thead>
<tr>
<th>Race</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>99.60%</td>
</tr>
<tr>
<td>Black</td>
<td>0.40%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.00%</td>
</tr>
<tr>
<td>Native American</td>
<td>0.00%</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Utilities

Baseline	0.7850	Clarke et al., 2002
SHE2 (daytime)	-0.055	Evans et al., 2013
SHE2 (nocturnal)	-0.057	Evans et al., 2013
SHE1	-0.0183	Marriott et al., 2010
NSHE (calculated using flash monitoring event rate)	-0.002	Lauridsen et al., 2014
NSHE (calculated using SMBG event rate)	-0.00163	Lauridsen et al., 2014

BMI = body mass index; bpm = beats per minute; eGFR = estimated glomerular filtration rate; HbA1c = glycated haemoglobin; HDL = high-density lipoprotein; LDL = low-density lipoprotein; NSHE = non-severe hypoglycaemic event; SD = standard deviation; SHE1 = severe hypoglycaemic event that may require third-party non-medical assistance; SHE2 = severe hypoglycaemic event that may require third-party medical assistance; SMBG = self-monitored blood glucose; WBC = white blood cells.
Few SHEs were observed in IMPACT as the trial was not designed to assess severe events. Therefore, data from the UK Hypoglycaemia Study Group41 was used to inform the total rate of severe events (320/100 patient-years [PYs]); these were used as a proxy to align with ‘significant’ hypoglycaemic events as noted in current guidance (<55mg/dL).43 The proportion of severe events that are SHE2s was derived from the literature (11.8%),44 resulting in 282.24 SHE1 events/100 PYs and 37.76 SHE2 events/100 PYs. These values were assumed equivalent across both treatment arms.

Intervention-related resource utilisation

Intervention-related resource use was based on reported values from IMPACT. Patients using flash monitoring required 182.5 test strips/year, 267.4 lancets/year and 45.8 units of insulin/day. It was also assumed that flash monitoring patients require 26 sensors/year and an extra physician visit in year 1. Patients with SMBG used 1,971 test strips/year, 657.6 lancets/year and 38.4 units of insulin/day.

Unit costs

Table 343–48 shows key cost inputs for the analyses, including intervention-related unit costs, total intervention costs, and costs for key acute events; Appendix 1 shows the full list of costs used in the analyses. Intervention-specific consumables reflect lowest-cost items available from Tandvårds-Läkemedelsförmånsverket (TLV).49 Costs were inflated as needed to 2016 using the consumer price index for Sweden from the Organization for Economic Co-operation and Development.50

Utilities

Utilities and disutilities (Table 12,46–48, Appendix 2) are derived from published literature, with the baseline diabetes utility46 and complication-related values obtained from T2D populations,24 as it is not expected that quality of life for complications would differ based on diabetes type. For hypoglycaemia, literature shows that patients experience relatively high disutilities for initial non-severe events; yet, the disutility per event diminishes as frequency increases.35 Therefore, the IQVIA CDM automated incorporation of the Lauridsen approach to estimate NSHE disutility was utilised. A treatment-related utility benefit of 0.030 was applied to the flash monitor arm based on a recent time trade off (TTO) study.24 We explored this concept further with sensitivity analyses.

Analyses

The base case analysis compared flash monitor use against SMBG use, reflecting the intervention effects summarised in Table 2.21,41,42 In addition to the base case, scenario analyses (summarised in Table 4) explored the impact of key model assumptions. Note that due to the comprehensive nature of the IQVIA CDM, parameters are too numerous to perform systematic univariate sensitivity analyses; however, scenarios tested key inputs, assumptions, and alternate data sources to provide evidence-based clarity on sensitivity to each of these components.

Two scenarios test the impact of incorporating resource utilisation observed in the trials. In these scenarios, trial-based use of resources such as ambulances, emergency room visits and hospitalisation were implemented. Based on the hypothesis that some of these differences may have been driven by hypoglycaemic events, assigned
hypoglycaemic event costs were removed from the model. In the first scenario, these resources were assumed to apply in year 1 only (as in the trial), and the second analysis explored continued differences over the model horizon.

Another scenario explored the potential impact on cost-effectiveness due to real-world intervention effect, rather than trial-based values. Specifically, cross-sectional data from over 50,000 flash monitoring readers shows an average of 16 scans/day,\(^1\) which can be compared to a population average for patients with T1D of 5–6 tests/day.\(^2\) Miller et al. have shown an association in patients with T1D between number of daily blood glucose tests and HbA1c levels,\(^3\) which is replicated in flash monitor user data. Therefore, exploratory analysis, based on assuming that high scan frequency leads to HbA1c improvements, evaluated the potential impact of a higher scan rate on cost-effectiveness. Data revealed that patients who scan 16 times/day versus those who only scan 5–6 times/day have 0.58% lower HbA1c. For the purposes of this exploration, this value was applied as a potential decrease in HbA1c due to flash monitoring, compared to 0% decrease for SMBG.

Additional scenarios explored the impact of varying the flash monitoring utility benefit (95% confidence interval (CI) 0.023, 0.038), an alternate set

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Description</th>
<th>Flash monitoring</th>
<th>SMBG</th>
<th>Incremental</th>
<th>ICER/LY (SEK)</th>
<th>ICER/QALY (SEK)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Costs (SEK)</td>
<td>QALYs</td>
<td>LYs</td>
<td>Costs (SEK)</td>
<td>QALYs</td>
<td>Costs (SEK)</td>
</tr>
<tr>
<td></td>
<td>Base case</td>
<td>1,222,333</td>
<td>21.10</td>
<td>989,051</td>
<td>21.10</td>
<td>233,283</td>
</tr>
<tr>
<td></td>
<td>SA 1</td>
<td>1,181,555</td>
<td>21.10</td>
<td>948,907</td>
<td>21.10</td>
<td>232,648</td>
</tr>
<tr>
<td></td>
<td>SA 2</td>
<td>1,141,246</td>
<td>21.10</td>
<td>962,283</td>
<td>21.10</td>
<td>178,963</td>
</tr>
<tr>
<td></td>
<td>SA 3</td>
<td>1,112,006</td>
<td>21.39</td>
<td>970,024</td>
<td>21.16</td>
<td>141,982</td>
</tr>
<tr>
<td></td>
<td>SA 4</td>
<td>1,195,837</td>
<td>21.10</td>
<td>989,051</td>
<td>21.10</td>
<td>206,786</td>
</tr>
<tr>
<td></td>
<td>SA 5</td>
<td>1,222,333</td>
<td>21.10</td>
<td>989,051</td>
<td>21.10</td>
<td>233,283</td>
</tr>
<tr>
<td></td>
<td>SA 6</td>
<td>1,222,333</td>
<td>21.10</td>
<td>989,051</td>
<td>21.10</td>
<td>233,283</td>
</tr>
<tr>
<td></td>
<td>SA 7</td>
<td>2,476,061</td>
<td>36.02</td>
<td>2,075,401</td>
<td>36.02</td>
<td>400,661</td>
</tr>
<tr>
<td></td>
<td>SA 8</td>
<td>832,167</td>
<td>15.88</td>
<td>656,947</td>
<td>15.88</td>
<td>175,220</td>
</tr>
<tr>
<td></td>
<td>Time horizon</td>
<td>151,249</td>
<td>4.56</td>
<td>100,443</td>
<td>4.56</td>
<td>50,806</td>
</tr>
<tr>
<td></td>
<td>Time horizon</td>
<td>301,242</td>
<td>8.43</td>
<td>208,352</td>
<td>8.43</td>
<td>92,890</td>
</tr>
</tbody>
</table>

CI = confidence interval; HbA1c = glycated haemoglobin; ICER = incremental cost effectiveness ratio; LY = life year; NSHE = non-severe hypoglycaemic event; QALY = quality-adjusted life years; SA = sensitivity analysis; SEK = Swedish kroner; SHE = severe hypoglycaemic event; SMBG = self-monitored blood glucose.
of data (UK Hypo Study Group)41 to inform NSHE rates (2,900/100 PYs for SMBG; 2,100/100 PYs for flash monitoring when applying the IMPACT-based reduction due to flash monitoring), 50% decrease in SHEs based on observed decrease in sensor measurements under 40 mg/dL, and varied discount rates and time horizons.

Results

Disaggregated results, including total costs and QALYs per strategy, are reported in Table 4. In the base case analysis, total direct medical costs for flash monitor use were SEK1,222,333 compared to SEK989,051 for SMBG use in T1D. These costs aligned with an equivalent life expectancy of 21.1 life-years (LYs) due to non-differential survival effect, but with a total of 0.80 additional QALYs for flash monitor patients (13.26 versus 12.46 SMBG). The corresponding incremental cost-effectiveness ratio (ICER) is SEK291,130/QALY. Patients with T1D with flash monitoring experience 687 fewer NSHEs than those with SMBG; the cost per NSHE averted was SEK339.56.

Key scenarios evaluated to test the impact of assumptions or input values are reported in Table 4 and Figure 1. The most favourable ICERS – more than 50% lower than base case – reflect improved intervention effects. In the first case, reducing severe hypoglycaemia by 55% according to sensor-based reductions in 40 mg/dL events led to an ICER of SEK124,705/QALY. Potential HbA1c improvement led to another similarly low ICER (SEK132,557/QALY); this ICER was based on exploring the potential relationship between high daily scan frequency found to occur in real-world use of the flash monitor and HbA1c level. Conversely, the highest ICER was associated with the lower 95% CI for health state utility benefit due to flash monitoring use, which impacts quality-adjusted survival. Although the model is thus shown to be most sensitive to intervention effects on HbA1c, severe hypoglycaemia and monitoring-related health utility, all ICERS remained under SEK400,000/QALY.

Discussion

This is the first cost-effectiveness analysis to evaluate a flash monitoring system. Results demonstrate that use of flash monitoring is associated with a modest impact on diabetes-related costs and can be considered cost-effective compared to current standard of care (SMBG) in intensive insulin users with T1D. In clinical trials, use of the system has been shown to reduce the number of hypoglycaemic events without raising HbA1c across populations and may increase awareness of a patient’s glucose profile, potentially improving management of their condition. Although no survival difference is expected based on default intervention effects, meaningful QALY differences accrue over a lifetime horizon. These differences are due to offsetting hypoglycaemic events, and to a greater extent, to nearly eliminating the finger-pricking associated with SMBG, which has been shown to translate to a health utility improvement.51

When exploring additional scenarios, results are generally robust to evidence-based alternate assumptions. Model results may be sensitive to additional clinical benefits (e.g. HbA1c improvement or reduction in SHEs) as well as decrease in health utility associated with flash monitoring (which impacts QALY outcomes). However, ICERS remaining under willingness-to-pay ranges for Sweden for all scenarios. Although Sweden does not publish an explicit cost-effectiveness threshold, interventions have been accepted with an average ICER of €36,000/QALY (which is approximately SEK400,000/QALY) and publications note an ‘informal threshold’ of SEK500,000.53,54 Treatments for more severe conditions have been considered acceptable up to the much higher amount of €90,000/QALY (SEK827,000/QALY).55,56

A number of limitations for this study must be acknowledged. The analysis assumes that NSHEs are not associated with the occurrence of other more severe events like severe hypoglycaemia, myocardial infarction and mortality. However, in the Predictable Results and
Experience in Diabetes through intensification and Control to Target: An International Variability Evaluation (PREDICTIVE) study, a high frequency of SHES was significantly associated with the occurrence of SHES. The base case analysis also does not assume an explicit link between hypoglycaemic unawareness and downstream increased risk of SHES. Given the extent of previously unrecognised hypoglycaemia detected by flash monitoring in the IMPACT trial, use of the flash monitoring system to better understand personal glucose trends may constitute an intervention to potentially help avoid hypoglycaemic unawareness and thereby reduce the risk of SHES. Thus, reduction in SHES was explored in scenario analysis.

Additionally, the analysis may not capture all health outcomes. For example, the model captures risk of cardiovascular disease based on HbA1c, lipid levels, blood pressure, comorbidities and body mass index. However, recent evidence suggests that people experiencing hypoglycaemic events may be at increased risk of cardiovascular disease. Although baseline characteristics in those T2D studies differ from our analysis, it raises the possibility that this analysis underestimates the value of offsetting hypoglycaemic events.

The main clinical data and patient characteristics for each analysis are taken from a 6-month trial of patients with well-controlled T1D, and may not exactly represent real-world effects of the flash monitor system or represent the patient population using flash monitoring in the real world. However, there were no protocol-mandated monitoring or adjustments to therapy, and default intervention effects may underestimate total benefit. This is based on recent evidence suggesting substantial clinical benefit to flash monitoring in real-world use; in addition to the cross-sectional real-world data that underpins this study’s HbA1c improvement scenario analysis, a recent meta-analysis has shown a similar level of HbA1c improvement (0.56% overall), with greater improvements in patients with higher baseline HbA1c levels upon initiating flash glucose monitoring use.

Our analysis simplified the treatment pathway faced by patients by assuming glucose monitoring and insulin use do not change over time. In the absence of data, typical modelling practice is to assume no difference associated with treatment; therefore, any insulin change applying to both strategies equally would not alter the conclusions of this study.

Additionally, current utility values may not exactly reflect the quality-of-life impact of using flash monitoring. The intervention-associated utility benefit, derived from a time trade-off study, assumed that flash monitoring offsets the need for SMBG blood tests performed on average three times/day. However, guidelines recommend testing 6–10 times/day, and IMPACT resource utilisation indicates that during the trial, SMBG users tested 5.4 times/day versus 0.5 times/day for flash monitoring users. This greater difference in test frequency may translate into a larger utility benefit. Conversely, the time trade-off study measured utilities for patients based on the assumption of three tests versus no tests; therefore, minimal concurrent testing may lower the cited benefit. Sensitivity analyses applying the 95% CI from the time trade-off study showed that using the lower estimate of utility gain still results in a cost-effective result. The disutility associated with NSHES is assumed to reflect the diminishing effect of each event as they become more frequent, as has been shown in recent research. However, the average value per event applying this technique is much smaller than that used in prior economic analyses, and therefore the ICERs in this study are likely to be more conservative but also more realistic relative to other published values.

Despite the limitations, this study facilitates understanding of the potential economic value of using flash monitoring versus SMBG in T1D intensive insulin users. This analysis shows that improved hypoglycaemia outcomes and health utility benefit associated with flash monitoring may translate into economic value compared to SMBG, with incremental costs per QALY under acceptable willingness-to-pay thresholds. As results remained robust across scenario analyses, flash monitoring may be considered cost-effective in a Swedish population among T1D intensive insulin users.

34. Evans M, Khunti K, Mamidi M, et al. Health-related quality

