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Coincident with the diabetes pandemic, diabetic complications—especially kidney disease and cardiovascular disease—have become 
large-scale public health problems. Glucagon-like peptide-1 (GLP-1) receptor agonists, a newer class of anti-hyperglycemic therapies, 
represent a major advance in the treatment of these complications in type 2 diabetes. In addition to effectively treating hyperglycemia, 

they have a low intrinsic risk of hypoglycemia and promote reductions in blood pressure and body weight. Furthermore, in clinical trials of 
GLP-1 receptor agonists, the risks of cardiovascular events and new or worsening diabetic kidney disease (DKD) were reduced. As a result, 
guidelines from major professional organizations now recommend GLP-1 receptor agonists for patients with type 2 diabetes, to reduce the 
risk of atherosclerotic cardiovascular disease or DKD. The exact mechanism behind these clinical benefits is currently under investigation, as 
they cannot be fully explained by the observed glycemic-lowering properties, or the modest improvements in blood pressure and weight loss 
caused by agents in this class. Emerging data suggest that the pro-inflammatory consequences of diabetes are a likely therapeutic target for the 
immunomodulatory effects of GLP-1 receptor agonists on the kidney and heart.
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Clinical Evidence and Proposed Mechanisms 
for Cardiovascular and Kidney Benefits from 
Glucagon-like Peptide-1 Receptor Agonists

In the USA, over 30 million people—about 10% of the population—have diabetes.1 Worldwide, the 

number of people with diabetes has risen sharply, especially in low- and middle-income countries. 

One in 11 adults—about 470 million people—had diabetes in the year 2019, and 700 million 

cases are projected worldwide by 2045.2 The vast majority of people with diabetes, >95%, have 

type 2 diabetes (T2D). Macro- and microvascular complications of T2D markedly increase morbidity 

and mortality. Notably, development of chronic kidney disease in diabetes, also referred to as diabetic 

kidney disease (DKD), compounds the already elevated risk of all-cause and cardiovascular death 

associated with diabetes.3–6

Glucagon-like peptide-1 (GLP-1) receptor agonists currently approved by the United States Food and 

Drug Administration (FDA), include exenatide, liraglutide, lixisenatide, dulaglutide, and semaglutide. 

The appearance of exenatide, the first-in-class GLP-1 receptor agonist to receive approval from the 

FDA in 2005, garnered enthusiasm about this new class of glucose-lowering medications that carried 

a low risk of hypoglycemia and helped patients with T2D lose weight. Shortly thereafter, in 2008, 

the FDA disseminated a Guidance for Industry which laid out a roadmap to conduct cardiovascular 

outcome trials (CVOTs) designed to assess the cardiovascular safety of newly approved glucose 

lowering agents.7 CVOTs for several GLP-1 receptor agonists have demonstrated beneficial results with 

regard to primary cardiovascular disease outcomes and main secondary kidney disease outcomes. 

As a result, multiple professional organizations, including the American Diabetes Association (ADA), 

the American Association of Clinical Endocrinologists (AACE), the American College of Endocrinology 

(ACE), the European Association for the Study of Diabetes (EASD), and the European Society of 

Cardiology (ESC), now recommend GLP-1 receptor agonists for patients with T2D who are at risk of 

atherosclerotic cardiovascular disease and DKD.8–11

This review discusses current evidence for use of GLP-1 receptor agonists based upon available data 

from clinical trials, as well as a review of plausible biological mechanisms by which GLP-1 receptor 

agonists convey cardiovascular and kidney protection. Additionally, it provides clinical practice 

recommendations for the use of GLP-1 receptor agonists in patients with T2D.
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Kidney disease outcomes of clinical trials with 
glucagon-like peptide-1 receptor agonists
To date, trials for liraglutide, semaglutide, exenatide, and dulaglutide have 

reported secondary outcomes for kidney disease in diabetic patients. For 

the purpose of discussing these trials, DKD is considered an interchangeable 

term for chronic kidney disease in diabetes and diabetic nephropathy.

Liraglutide
The LEADER (Liraglutide Effect and Action in Diabetes: Evaluation of 

Cardiovascular Outcome Results) CVOT enrolled patients with T2D and 

high cardiovascular risk, with a median follow-up duration of 3.8 years.12 

Approximately 23% of participants had moderate-to-severe DKD. The primary 

composite cardiovascular outcome was death from cardiovascular causes, 

myocardial infarction, or stroke (3-point major adverse cardiovascular 

events [MACE]), which occurred in fewer patients receiving liraglutide 

(608/4,668 patients; 13%) than in those receiving placebo (694/4,672; 15%). 

The difference was statistically significant for non-inferiority (hazard ratio 

[HR] 0.87; 95% confidence interval [CI] 0.78–0.97; p<0.001). This finding led 

to a new indication for liraglutide for reducing the risk of MACE in adults 

with T2D and established cardiovascular disease (Table 1).12–18

Compared with placebo, liraglutide treatment was associated with a 

lower rate of the secondary outcome for kidney disease, a composite of  

new-onset macroalbuminuria, doubling of serum creatinine and creatinine 

clearance <45 mL/min/1.73 m2, end-stage kidney disease, or death due 

to kidney disease. The kidney disease outcome occurred in 161 patients 

treated with liraglutide compared with 215 patients randomized to 

receive placebo (HR 0.74; 95% CI 0.60–0.91; p=0.004; Table 2).12,14,16,17,19  

The decline in estimated glomerular filtration rate (eGFR) at 36 months 

was -7.4 versus -7.8 mL/min/1.73m2 in the liraglutide and placebo groups, 

respectively; showing a significantly slower decline in the liraglutide group.20 

However, shorter treatment duration (26 weeks) with liraglutide did not 

demonstrate a beneficial effect on eGFR decline, perhaps due to insufficient 

observation time.21

Semaglutide
The effects of the injectable and oral formulations of semaglutide on 

cardiovascular and kidney outcomes were evaluated in two large CVOTs. The 

SUSTAIN-6 (Trial to Evaluate Cardiovascular and Other Long-term Outcomes 

with Semaglutide in Subjects with Type 2 Diabetes) trial enrolled patients with 

established cardiovascular disease, chronic kidney disease, or both.17 The 

median duration of follow-up for study participants was 2.1 years. Treatment 

with injectable semaglutide was non-inferior to placebo for the primary 

composite outcome of first occurrence of 3-point MACE (HR 0.74; 95% CI 

0.58–0.95; p<0.001 for non-inferiority; Table 1). In addition, semaglutide was 

also superior to placebo for the primary cardiovascular outcome. SUSTAIN-6 

had a secondary outcome of new or worsening DKD, which was lower in the 

group receiving semaglutide (HR 0.64; 95% CI 0.46–0.88; p=0.005; Table 2). 

The benefit seen in the semaglutide group on new or worsening DKD was 

primarily driven by differences in macroalbuminuria. Based on SUSTAIN-6, 

injectable semaglutide was given an indication to reduce MACE in adults 

with T2D and established cardiovascular disease.22

The PIONEER-6 (Peptide Innovation for Early Diabetes Treatment) trial 

assessed the cardiovascular safety of oral semaglutide in people with 

T2D and cardiovascular or DKD. After a median duration of follow up of  

Table 1: Summary of cardiovascular outcome trials with glucagon-like peptide-1 receptor agonists

REWIND14

(n=9,901)
EXSCEL15

(n=14,752)

ELIXA16

(n=6,068)

LEADER12

(n=9,340)

SUSTAIN-617

(n=3,297)

PIONEER-618

(n=3,183)

Agent Dulaglutide Exenatide XR Lixisenatide Liraglutide Semaglutide

(injectable)

Semaglutide

(oral)

Median follow-up, years 5.4 3.2 2.1 3.8 2.1 1.3

Metformin use, % 81 77 66 76 73 77

Prior CVD, % 32 73 100 81 59 85

Mean baseline HbA1c, % 7.2 8.0 7.7 8.7 8.7 8.2

Primary outcome, HR (95% CI) 3-point MACE

0.88

(0.79–0.99)

3-point MACE

0.91

(0.83–1.00)

4-point MACE

1.0

(0.89–1.17)

3-point MACE

0.87

(0.78–0.97)

3-point MACE

0.74

(0.58–0.95)

3-point MACE

0.79

(0.57–1.10)*

Cardiovascular death, HR  

(95% CI)

0.91

(0.78–1.06)

0.88

(0.76–1.02)

0.98

(0.78–1.22)

0.88

(0.75–1.03)

0.98

(0.65–1.48)

0.49

(0.27–0.92)

Myocardial infarction, HR  

(95% CI)

0.96

(0.79–1.16)

0.97

(0.85–1.10)

1.03

(0.87–1.22)

0.86

(0.73–1.00)

0.74

(0.51–1.08)

1.18

(0.73–1.90)

Stroke, HR (95% CI) 0.76

(0.61–0.95)

0.85

(0.70–1.03)

1.12

(0.79–1.58)

0.86

(0.71–1.11)

0.61

(0.38–0.99)

0.74

(0.35–1.60)

All-cause mortality, HR (95% CI) 0.90

(0.80–1.01)

0.86

(0.77–0.97)

0.94

(0.78–1.13)

0.85

(0.74–0.97)

1.05

(0.74–1.50)

0.51

(0.31–0.84)

*p<0.001 for non-inferiority; p=0.17 for superiority.
Definition of 3-point MACE: a composite of cardiovascular death, non-fatal myocardial infarction, and non-fatal stroke. 
Definition of 4-point MACE: a composite of cardiovascular death, non-fatal myocardial infarction and hospitalization for unstable angina.
CI = confidence interval; CVD = cardiovascular disease; ELIXA = Evaluation of Lixisenatide in Acute Coronary Syndrome; EXSCEL = Exenatide Study of Cardiovascular Event Lowering; 
HbA1c = glycated hemoglobin; HR = hazard ratio; LEADER = Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results; MACE = major adverse 
cardiovascular events; PIONEER-6 = Peptide Innovation for Early Diabetes Treatment 6; REWIND = Researching Cardiovascular Events with a Weekly Incretin in Diabetes;  
SUSTAIN-6 = Trial to Evaluate Cardiovascular and Other Long-term Outcomes with Semaglutide in Subjects with Type 2 Diabetes; XR = extended release.
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1.3 years, oral semaglutide showed non-inferiority when compared with 

placebo for the primary composite outcome of 3-point MACE (HR 0.79; 

95% CI 0.57–1.1; p<0.001 for non-inferiority). This trial report has not yet 

reported kidney disease outcomes.18 To date, oral semaglutide does not 

carry an indication for reduction of MACE.

Lixisenatide
The ELIXA (Evaluation of Lixisenatide in Acute Coronary Syndrome) trial 

enrolled patients with T2D and a recent history of myocardial infarction 

or hospitalization for unstable angina.16 Study participants were followed 

within the trial for a median 2.1 years. A large proportion of participants 

had microalbuminuria (1,148/6,068) or macroalbuminuria (389/6,068). 

Lixisenatide proved non-inferior to placebo for the primary composite 

outcome of cardiovascular death, myocardial infarction, stroke, or 

hospitalization for unstable angina (HR 1.0; 95% CI 0.89–1.2; p<0.001), but 

did not demonstrate superiority (Table 1).

An exploratory analysis of ELIXA investigated the proportional change 

in albuminuria and eGFR according to baseline albuminuria status and 

examined the time to new-onset macroalbuminuria and doubling of serum 

creatinine. After adjustment for traditional DKD risk factors, lixisenatide 

was shown to reduce progression of albuminuria in participants who were 

macroalbuminuric (-39%; 95% CI -69 to -9.8; p=0.007). Lixisenatide treatment 

was also associated with a lower risk for new onset macroalbuminuria 

adjusted for baseline and time-varying glycated hemoglobin (HbA1c) (HR 

0.81; 95% CI 0.66–0.99; p=0.04 and HR 0.82; 95% CI 0.66–0.99; p=0.049, 

respectively), but no differences in eGFR decline were observed between 

treatment groups.23

Exenatide
The EXSCEL (Exenatide Study of Cardiovascular Event Lowering) trial enrolled 

patients with T2D with (10,782/14,752; 73%) or without (3,970/14,752; 27%) 

previous cardiovascular disease.15 The primary cardiovascular composite 

outcome (3-point MACE) met criteria for non-inferiority in participants on 

once-weekly exenatide compared with placebo; however, it did not reach 

statistical significance for superiority (HR 0.91; 95% CI 0.83–1.0; p<0.001 for 

non-inferiority; Table 1). After a median follow-up period of 3.2 years, the 

mean change in eGFR from baseline (77 mL/min/1.73 m2 in the exenatide 

group and 76 mL/min/1.73m2 in the placebo group) was similar in both 

treatment arms.15,24 New-onset macroalbuminuria was noted in 2.2% and 

2.5% of participants in the exenatide and placebo groups, respectively 

(HR 0.87; 95% CI 0.70–1.1; p=0.19).24 Another recently reported post-hoc 

analysis compared the effects of twice-daily exenatide versus titrated 

insulin glargine on eGFR and albuminuria in patients with T2D without overt 

DKD.18 This post-hoc analysis similarly did not find a beneficial effect of 

exenatide on eGFR decline or progression of albuminuria.25

Dulaglutide
The cardiovascular safety of dulaglutide was assessed in the REWIND 

(Researching Cardiovascular Events with a Weekly Incretin in Diabetes) trial.14 

A total of 9,901 participants with T2D were enrolled in REWIND and followed 

for a median duration of 5.4 years. Notably, approximately 30% of enrolled 

participants in REWIND had a previous history of cardiovascular disease, with 

the remaining majority of participants being a “primary prevention” group 

with cardiovascular risk factors. REWIND additionally had a lower mean 

HbA1c compared with other CVOTs with GLP-1 receptor agonists (Table 1). 

Overall, the primary composite outcome (3-point MACE) was significantly 

Table 2: Kidney outcomes in clinical trials with glucagon-like peptide-1 receptor agonists

REWIND14

(n=9,901)

AWARD-719

(n=577) 

ELIXA16

(n=6,068)

LEADER12

(n=9,340)

SUSTAIN-617

(n=3,297)

Intervention/drugs Dulaglutide Dulaglutide Lixisenatide Liraglutide Semaglutide

Median follow-up 5.4 years 52 weeks 2.1 years 3.8 years 2.1 years

Secondary or 

exploratory 

kidney-disease 

outcomes

Secondary outcome: 

Lower incidence 

of the composite 

endpoint (new onset 

macroalbuminuria, 

≥30% decline in eGFR, 

or need for chronic 

KRT) 17% in dulaglutide 

versus 20% in placebo 

group (p<0.001)

Secondary outcome:

eGFR decline (mL/min/1.73m2):

• 3.3 insulin glargine

• 0.7 duaglutide 0.75 mg* and 1.5 mg*

• *p<0.05 compared with glargine.

eGFR decline (mL/min/1.73m2) in UACR  

> 300 mg/g group:

• 5.5 insulin glargine

• 0.7 dulaglutide 0.75 mg*

• 0.5 dulaglutide 1.5 mg*

• *p<0.05 compared with glargine

UACR reduction:

• 13% insulin glargine

• 29% dulaglutide 1.5 mg*

• *p<0.05 compared with glargine

Prespecified analysis:

Change in UACR in %: 

34% in placebo versus 

24% in lixisenatide 

group (p=0.004); 

attenuated after 

adjustment for HbA1c 

(p=0.07)

Secondary outcome:

Lower incidence 

of composite 

outcome (new onset 

albuminuria, doubling 

of sCr and CrCl  

<45 mL/min, need for 

KRT, death due to renal 

causes) 

1.5 events/100 patient/

year in liraglutide 

versus 1.9 events 

events/100 patient/

year in placebo group 

(p=0.003)

Secondary outcome:

Lower incidence of 

new or worsening 

nephropathy:

3.8% in semaglutide 

versus 6.1% in placebo 

group (p=0.005)

Lower rate of new onset 

macroalbuminuria:  

2.5% in semaglutide 

versus 4.9% in placebo 

group

*Clinical trial results not yet available.
AWARD-7 = A Study Comparing Dulaglutide With Insulin Glargine on Glycemic Control in Participants With Type 2 Diabetes (T2D) and Moderate or Severe Chronic Kidney Disease (CKD); 
CrCl = creatinine clearance; eGFR = estimated glomerular filtration rate; ELIXA = Evaluation of Lixisenatide in Acute Coronary Syndrome; KRT = kidney replacement therapy;  
LEADER = Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results; REWIND = Researching Cardiovascular Events with a Weekly Incretin in Diabetes;  
sCr = serum creatinine; SUSTAIN-6 = Trial to Evaluate Cardiovascular and Other Long-term Outcomes with Semaglutide in Subjects with Type 2 Diabetes; UACR = albumin-to-creatinine 
ratio (with albumin measured in milligrams and creatinine measured in grams).
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reduced in participants receiving dulaglutide versus placebo (HR 0.88; 95% 

CI 0.79–0.99; p=0.026). Based on findings from REWIND, dulaglutide was 

granted an indication to reduce the risk of MACE in adults with T2D with 

established cardiovascular disease or multiple cardiovascular risk factors,26 

making dulaglutide the first GLP-1 receptor agonist to receive an indication 

for primary prevention of MACE. Because the benefits of dulaglutide in the 

REWIND trial were not limited to participants with an elevated HbA1c, the 

REWIND trial has also supported recent recommendations for use of GLP-1 

receptor agonists in patients with T2D at high risk for, or with, established 

atherosclerotic cardiovascular disease, irrespective of baseline HbA1c or 

individualized HbA1c target.13

The AWARD-7 trial (A Study Comparing Dulaglutide With Insulin Glargine 

on Glycemic Control in Participants With Type 2 Diabetes (T2D) and 

Moderate or Severe Chronic Kidney Disease [CKD]) was the first clinical 

trial of a GLP-1 receptor agonist in patients with T2D selected for  

moderate-to-severe DKD (mean eGFR 38 mL/min/1.73 m2). Both dulaglutide 

treatment groups experienced less eGFR decline when compared 

with participants in the insulin glargine treatment group: mean eGFR 

decline was -3.3 mL/min/1.73 m² in the insulin glargine group versus  

-0.7 mL/min/1.73 m2 in both higher (1.5 mg weekly) and lower (0.75 mg 

weekly) dose dulaglutide-treated groups. Among AWARD-7 participants 

with macroalbuminuria, who are at high-risk for DKD progression, a marked 

attenuation of eGFR decline was observed (mean -5.5  mL/min/1.73 m2 in the 

insulin glargine group versus -0.7 mL/min/1.73 m2 and -0.5 mL/min/1.73 m2 

in the dulaglutide 0.75 mg weekly and 1.5 mg weekly groups, respectively; 

Table 2).19 Notably, fewer participants in the higher dose dulaglutide group 

reached the composite endpoint of end-stage kidney disease or ≥40% 

eGFR decline compared with the insulin glargine group (5.2% versus 11%, 

p=0.038; Table 2).19 The secondary kidney disease outcomes from REWIND 

support the AWARD-7 findings. In REWIND, approximately 20% and 35% 

of participants had an eGFR <60 mL/min/1.73 m2 or microalbuminuria, 

respectively (Table 1).14 The main secondary kidney disease outcome 

included new onset macroalbuminuria, sustained decline in eGFR of 

≥30%, or end stage kidney disease. Treatment with dulaglutide compared 

with placebo resulted in significantly fewer participants experiencing a  

kidney-related event (17% versus 20%; p<0.001; Table 2).

Putative mechanisms for kidney and 
cardiovascular benefits of glucagon-like  
peptide-1 receptor agonists
Primary non-glycemic benefits of GLP-1 receptor agonist therapy are 

reduction of body weight and blood pressure. GLP-1 receptor agonists 

produce a mean weight loss of approximately 3 kg per available clinical trial 

data.27 In the CVOTs, mean systolic blood pressure was typically reduced 

by 3–4 mmHg.28 Such reductions in body weight and blood pressure also 

contribute to cardiovascular risk reduction. Although glycemic control was 

improved with GLP-1 receptor agonist therapy compared with placebo in 

the CVOTs, glucose lowering per se in previous clinical trials for T2D did 

not reduce risk for major atherosclerotic cardiovascular disease events.29–31 

Therefore, the clinical benefits of GLP-1 receptor agonists are not likely to 

be fully explained by improvements in traditional risk factors.

A plausible hypothesis is that GLP-1 receptor agonists protect the heart 

and kidney via anti-oxidative and anti-inflammatory effects that mitigate 

key mechanisms of kidney and cardiovascular damage in diabetes.32–35 It 

is not yet determined to what extent these effects are mediated by the 

GLP-1 receptor,  which is expressed in many tissues, including the rodent 

glomerulus and the human kidney, cardiomyocytes, and autonomic nervous 

system tissues. (Figure 1).36–40

Diabetes is a state of ongoing inflammation arising from activation of 

the innate immune system, which may manifest clinically as increases in 

circulating immune cells and markers of inflammation.34,41–44 The circulating 

biomarkers are primarily mediators of the acute phase of the innate immune 

response, including serum amyloid A, sialic acid, C-reactive protein, and 

interleukin-6.45,46 Hyperglycemia correlates with higher circulating levels  

of inflammatory mediators, and glycemic control is associated with their 

reductions.44 This sustained inflammatory state is a predisposing factor for  

DKD, as reflected in increased urinary markers of inflammation, including 

α1-acid glycoprotein 1, haptoglobin, clusterin, α2-HS-glycoprotein, and 

mannan-binding lectin serine protease 2.47,48

A proposed paradigm for the pathogenesis of DKD includes a series of 

metabolic and hemodynamic insults instigated by the diabetic milieu that 

cause inflammation, fibrosis, and eventual loss of kidney function. Persistent 

hyperglycemia, insulin resistance, oxidative stress, and elevated production 

of advanced glycation end-products result in activation of the immune 

response early in the course of diabetes.32,33,41 This immune response, in 

turn, drives inflammation that worsens over time, causing inflammatory 

cell infiltration of the kidney, and perhaps activation of the resident T-cell 

populations in the kidney.49 Invasion of these inflammatory cells ultimately 

results in upregulation of growth factors and pro-fibrotic cytokines that 

cause fibrosis and destruction of the kidney parenchyma.33,50,51 Some of 

the mechanisms contributing to  fibrotic deposition in the glomerulus are 

impaired breakdown of fibrotic proteins by matrix metalloproteinases and 

upregulated matrix protein production in mesangial cells.52

GLP-1 receptor agonists reduce both the inflammatory response and oxidative 

stress, perhaps explaining their beneficial effect on DKD. For instance, in 

adults with T2D, native GLP-1 and exenatide attenuate circulating levels of 

a number of inflammatory and oxidative stress biomarkers (interleukin-6 

and -1β, monocyte chemoattractant protein-1, adhesion molecules, 

prostaglandins, serum amyloid A, tumor necrosis factor-α, toll-like receptors, 

and circulating mononuclear cells).53 In experimental DKD models, GLP-1 

receptor agonist treatment exhibits anti-inflammatory and antioxidative 

effects, resulting in protection from endothelial injury and reduction of 

proteinuria.38,54 A plausible explanation for these anti-inflammatory and  

anti-oxidative effects is inhibition of nicotinamide adenine dinucleotide 

phosphate oxidase by increased production of cyclic adenosine 

monophosphate and protein kinase A.55,56 Preclinical studies in murine 

and cell culture models of diabetes show that liraglutide, exedin-4, and 

GLP-1 reduce histological and functional damage associated with DKD by 

decreasing mesangial expansion, glomerular hypertrophy, proliferation of 

mesangial cells, and tubulointerstitial and glomerular fibrosis (Figure 1).38,54,57–61

Cardiovascular disease pathogenesis in T2D is multi-factorial and 

includes metabolic and hemodynamic insults as well as intracellular 

changes associated with activation of inflammatory signaling. The 

major consequences of T2D and chronic inflammation are deposition 

of atherosclerotic plaque, endothelial dysfunction, cardiac myocyte 

hypertrophy, and myocardial fibrosis.62 These, in turn, have negative effects 

on ventricular relaxation and contractility, as well as microvascular and 

macrovascular perfusion. In addition, the metabolic insults of diabetes 
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produce impaired substrate switching in the heart, resulting in energetic 

deficits.63 Together, these insults predispose to heart disease.

For example, liraglutide treatment promotes autophagy in cardiomyocytes, 

while interactions between GLP-1 receptor agonists and the autonomic 

nervous system may cause tachycardia.64,65 Additionally, cardiovascular 

protection by GLP-1 receptor agonists has been described in both 

preclinical and human studies. These protective effects include reduced 

inflammation, improved left ventricular function, increased plaque stability, 

and amelioration of ischemic injury. Exenatide directly induces vasodilation 

in humans through stimulation of nitric oxide production in the vascular 

endothelium.66 Both liraglutide and semaglutide modify atherosclerotic 

processes in humans with T2D, and in two mouse models of atherosclerosis 

(the APOE-/- and LDLr-/- models).67 Anti-atherosclerotic effects of liraglutide 

observed in mice include blocking low-density lipoprotein uptake and foam 

cell development.68 Studies on non-diabetic rats and isolated rodent hearts 

demonstrate reduced infarct size, increased glucose uptake by myocardial 

cells, and reduction of ventricular pressure with infusion of GLP-1 receptor 

agonists.69–71

Similarly, in ex vivo ischemia reperfusion experiments, GLP-1 receptor 

agonist infusions demonstrate rapid cardioprotection.72,73 Several clinical 

studies confirmed these findings in patients with acute ST-segment 

elevation infarct. Treatment with exenatide and liraglutide decreased infarct 

size, with evidence of improved left ventricular function as assessed by 

echocardiography or cardiac magnetic response imaging after 38 days to 

3 months.74–76

Current clinical use of glucagon-like peptide-1 
receptor agonists
GLP-1 receptor agonists are highly effective glucose-lowering agents in 

T2D, the original indication for their development. The ADA, EASD, ESC, 

and other professional organizations recommend GLP-1 receptor agonists 

as an option for patients not meeting individualized glycemic goals to 

reduce hyperglycemia and HbA1c. The GLP-1 receptor agonist class is 

also a preferred option for patients with T2D who have a need to minimize 

hypoglycemia or to minimize weight gain or promote weight loss. Notably, 

the ADA additionally recommends a GLP-1 receptor agonist in preference to 

insulin for patients with T2D who require greater glucose lowering than can be 

achieved with oral agents.8 They also recommend a “GLP-1 receptor agonist 

with good efficacy for weight loss” for weight reduction. Based on weight 

loss observed in clinical trials, the following hierarchy is recommended: 

semaglutide > liraglutide > dulaglutide > exenatide > lixisenatide. It is worth 

noting that liraglutide (marketed as Saxenda®, Novo Nordisk, Plainsboro, NJ, 

Figure 1: Putative mechanisms of glucagon-like peptide-1 receptor agonist therapies on diabetic kidney disease and 
cardiovascular disease

Effects of glucagon-like peptide-1 receptor agonists
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Systemic effects of glucagon-like peptide-1 (GLP-1) receptor agonist treatment include reduction of hyperglycemia, insulin resistance, body weight, blood pressure, reactive oxygen 
species (ROS) production, and nicotinamide adenine dinucleotide phosphate oxidase (NADPH) activity, resulting in modulation of the inflammatory response. Proposed effects in the 
kidney are principally related to suppression of inflammation, and specifically include suppression of oxidative stress, reduced fibrosis, and blockade of immune cell infiltration. In the 
heart, GLP-1 receptor agonist therapy also reduces inflammation, and appears to benefit both endothelial dysfunction and dyslipidemia. GLP-1 receptor agonist therapy also produces 
tachycardia. Importantly, it is unknown whether any, or all, of the above effects on the heart and vascular system are mediated via GLP-1 receptors, or whether they are mediated by 
other, as yet unrecognized, signaling pathways. It is likely that tachycardia is mediated by direct agonism of GLP-1 receptors expressed by cells within the autonomic nervous system.
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USA) carries an additional indication from the FDA for use as an adjunct 

to a reduced-calorie diet and increased physical activity for chronic weight 

management in adults who are overweight or obese.77

When considering a glucose-lowering agent in a patient with T2D, the first 

recommended consideration, per the 2020 ADA Standards of Medical 

Care in Diabetes and the EASD/ESC Consensus Statement, is whether or 

not the patient has indicators of high-risk or established atherosclerotic 

cardiovascular disease (ASCVD), DKD, or heart failure.8,11,78 If a patient does 

meet these criteria, it is recommended that an agent with evidence for 

cardiovascular or DKD risk reduction be considered independent of 

the patient’s current HbA1c or individualized HbA1c target. Notably, this 

recommendation is stated as actionable whenever one or more of these 

comorbidities arise. ASCVD is considered to predominate if a patient has 

established ASCVD or if they have indicators of high ASCVD risk (defined 

by the ADA as being >55 years of age with coronary, carotid, or lower 

extremity artery stenosis of >50% or with left ventricular hypertrophy). In 

patients who meet these criteria, the use of a GLP-1 receptor agonist or a  

sodium–glucose cotransporter-2 (SGLT2) inhibitor with proven 

cardiovascular benefit is preferred (Table 1). Within the ADA Standards 

of Care, agents with “proven cardiovascular benefit” are operationally 

defined as those with a labeled indication for reducing cardiovascular 

events. Liraglutide, dulaglutide, and subcutaneous semaglutide are the only  

GLP-1 receptor agonists currently with a labeled indication to reduce the 

Table 3: Labeled indications and dosing for currently available glucagon-like peptide-1 receptor agonists

Short-acting agents Long-acting agents

Exenatide79 Lixisenatide80 Dulaglutide26 Exenatide XR81 Liraglutide82 Semaglutide

(injectable)22

Semaglutide

(oral)83

Indication(s) Adjunct to diet and 

exercise to improve 

glycemic control 

in T2D

Adjunct to diet 

and exercise to 

improve glycemic 

control in T2D

• Adjunct to diet 

and exercise 

to improve 

glycemic 

control in T2D

• To reduce the 

risk of MACE 

in adults 

with T2D and 

established 

CVD or 

multiple 

cardiovascular 

risk factors

Adjunct to diet and 

exercise to improve 

glycemic control 

in T2D

• Adjunct to diet 

and exercise to 

improve glycemic 

control in T2D

• To reduce the risk 

of MACE in adults 

with T2D and 

established CVD

• Adjunct to diet and 

exercise to improve 

glycemic control in 

T2D

• To reduce the risk of 

MACE in adults with 

T2D and established 

CVD

Adjunct to diet and 

exercise to improve 

glycemic control 

in T2D

Administration 

frequency

Twice daily Once daily Once weekly Once weekly Once daily Once weekly Once daily

Recommended 

dosing

Initiate at 5 µg twice 

daily, then increase 

to 10 µg twice 

daily after 1 month 

according to clinical 

response

Initiate at 10 µg 

once daily for 

14 days, then 

increase to 20 µg 

daily

• Initiate at 

0.75 mg once 

weekly

• May increase 

to 1.5 mg for 

additional 

glycemic 

control

Administer 2 mg 

once weekly

• Initiate at  

0.6 mg per day 

for 1 week, then 

increase to  

1.2 mg

• May increase 

to 1.8 mg for 

additional 

glycemic control

• Initiate at 0.25 mg 

once weekly, then, 

after 4 weeks, 

increase to 0.5 mg 

once weekly

• May increase to  

1 mg for additional 

glycemic control

• Initiate at 3 mg 

once daily for  

30 days, then  

7 mg once daily

• May increase to 

14 mg once daily 

for additional 

glycemic control

Administration 

timing

Take within  

60 minutes before 

meals

Take within  

60 minutes before 

morning meal

Take on the same 

day each week

Take on the same 

day each week

Take at the same 

time each day

Take on the same day 

each week

Take at least  

30 minutes before 

breakfast*

Kidney dose 

adjustment

• Not 

recommended 

with CrCl  

<30 mL/min

• Caution 

recommended 

with initiating or 

escalating the 

dose with CrCl 

30–50 mL/min

Not recommended 

with CrCl  

<15 mL/min

No dosage 

adjustments 

recommended

• Not 

recommended 

with CrCl  

<30 mL/min

• Caution 

recommended 

with initiating or 

escalating the 

dose with CrCl 

30–50 mL/min

No dosage 

adjustments 

recommended

No dosage adjustments 

recommended

No dosage 

adjustments 

recommended

*To be taken at least 30 minutes before the first food, beverage, or other oral medications of the day with no more than 4 ounces of plain water only (as per product label).
CrCl = creatinine clearance; CVD = cardiovascular disease; MACE = major adverse cardiovascular events; N/A = not applicable; T2D = type 2 diabetes mellitus; XR = extended release.
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risk of MACE, although several other GLP-1 receptor agonists have reported 

benefits on MACE and other cardiovascular-related outcomes (Table 1).

For patients with DKD, the use of an SGLT2 inhibitor is preferentially 

recommended by the ADA, EASD, and ESC. If an SGLT2 inhibitor 

cannot be taken, due to a contraindication, intolerance, or low eGFR, a  

GLP-1 receptor agonist is recommended. These recommendations  

apply particularly to patients with an eGFR of 30–60 mL/min/1.73 m2 and  

a urinary albumin-to-creatinine ratio >30 mg/g according to the ADA.8  

GLP-1 receptor agonists address multiple clinical considerations important 

for patients with DKD including kidney protection, along with safe and 

effective glycemic control, body weight loss, and cardiovascular risk 

reduction. In addition, it is also key to consider which agent(s) may best align 

with the lifestyle of a given patient (e.g., dosing frequency, subcutaneous 

injection versus oral administration). Safety and tolerability should also 

be considered based on the risks and potential benefits of alternative 

treatment approaches. Table 3 provides a summary of FDA-approved 

indications and administration considerations for currently available GLP-1 

receptor agonist products.22,26,79–83

In summary, a patient-centered approach should guide the selection of 

GLP-1 receptor agonists for patients with T2D. Key considerations include:

• risks of hypoglycemia, DKD, and cardiovascular disease;

• impact on body weight; 

• cost and availability; 

• side effect profile; and 

• patient preferences. 

In patients with T2D who need greater glucose lowering than can be 

obtained with oral agents, GLP-1 receptor agonists are preferred to insulin 

when possible. A GLP-1 receptor agonist with demonstrated cardiovascular 

benefit is recommended independent of HbA1c among those who have 

atherosclerotic cardiovascular disease. In patients with DKD, a GLP-1 

receptor agonist may be used to safely and effectively treat hyperglycemia 

while also reducing albuminuria and eGFR decline. The medication regimen 

and medication-taking behavior should be reevaluated at regular intervals 

(every 3–6 months) and adjusted as needed to incorporate patient-specific 

factors that impact the choice of treatment.

Conclusions
Recommendations for clinical use of GLP-1 receptor agonists among 

patients with T2D are evolving rapidly, reflecting data emerging from 

numerous clinical trials. GLP-1 receptor agonists reduce risks of both 

atherosclerotic cardiovascular disease and DKD. There are likely to be direct 

receptor-mediated mechanisms of protection in the heart and kidney, as 

well as indirect effects related to reducing hyperglycemia, body weight, and 

blood pressure. Research supporting the use of GLP-1 receptor agonists 

is rapidly developing and could further expand the use of these agents to 

indications such as kidney disease and cardiovascular disease in individuals 

with and without diabetes. 
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