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Every 20 seconds a limb is amputated somewhere in the world due to diabetes. This is a global health problem that requires a global 
solution. The International Conference on Medical Image Computing and Computer Assisted Intervention challenge, which concerns the 
automated detection of diabetic foot ulcers (DFUs) using machine learning techniques, will accelerate the development of innovative 

healthcare technology to address this unmet medical need. In an effort to improve patient care and reduce the strain on healthcare systems, 
recent research has focused on the creation of cloud-based detection algorithms. These can be consumed as a service by a mobile app that 
patients (or a carer, partner or family member) could use themselves at home to monitor their condition and to detect the appearance of 
a DFU. Collaborative work between Manchester Metropolitan University, Lancashire Teaching Hospitals and the Manchester University NHS 
Foundation Trust has created a repository of 4,000 DFU images for the purpose of supporting research toward more advanced methods of 
DFU detection. This paper presents a dataset description and analysis, assessment methods, benchmark algorithms and initial evaluation 
results. It facilitates the challenge by providing useful insights into state-of-the-art and ongoing research.
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Wounds on the feet, known as diabetic foot ulcers (DFUs), are a major 

complication of diabetes. DFUs can become infected, leading to 

amputation of the foot or lower limb. Patients who undergo amputation 

experience significantly reduced survival rates.1 In previous studies, 

researchers have achieved high accuracy in the recognition of DFUs 

using machine learning algorithms.2–5 Additionally, researchers have 

demonstrated proof-of-concept in studies using mobile devices 

for foot image capture and DFU detection.6,7 However, there are still 

gaps in implementing these technologies across multiple devices in  

real-world settings.

The Diabetic Foot Ulcers Grand Challenge 2020 (DFUC 2020) is a 

medical imaging classification competition hosted by the Medical 

Image Computing and Computer Assisted Intervention (MICCAI) 2020.8 

The goal of DFUC 2020 is to improve the accuracy of DFU detection in 

real-world settings, and to motivate the use of more advanced machine 

learning techniques that are data-driven in nature. In turn, this will aid the 

development of a mobile app that can be used by patients, their carers, 

or their family members, to help with remote detection and monitoring of 

DFU in a home setting. Enabling patients to engage in active surveillance 

outside of the hospital will reduce risk for the patient and commensurately 

reduce resource utilization by healthcare systems.9,10 This is particularly 

pertinent in the current post-COVID-19 (coronavirus disease 2019) 

climate. People with diabetes have been shown to be at higher risk of 

serious complications from COVID-19 infection;11 therefore, limiting 

exposure to clinical settings is a priority. The aim of this work is to provide 

the research community with the first substantial publicly available DFU 

dataset with ground truth labelling. This will promote advancement in the 

field, and will lead to the development of technologies that will help to 

address the growing burden of DFUs.
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Related work
Recent years have attracted a growth in research interest in DFU due 

to the increase of reported cases of diabetes and the growing burden 

this represents on healthcare systems. Goyal et al. trained and validated 

a supervised deep learning model capable of DFU localization using 

faster region-based convolutional neural network (R-CNN) with Inception 

v2.7 Their method demonstrated high mean average precision (mAP) in 

experimental settings. However, this experiment used a relatively small 

dataset of 1,775 DFU images, with a post-processing stage required to 

remove false positives. Hence, the study is inconclusive for practical 

use of the proposed method in real-world settings. Improved object 

detection methods have emerged since this work, such as the very 

recently proposed EfficientDet, which may provide superior accuracy.12

Wang et al. created a mirror-image capture box to obtain DFU 

photographs for serial analysis.13 This study implemented a cascaded 

two-stage support vector machine classification to determine DFU area. 

Segmentation and feature extraction was achieved using a super-pixel 

technique to perform two-stage classification. One of these experiments 

included the use of a mobile app with the capture box.14 Although the 

solution is highly novel, the system exhibited a number of limitations. A 

mobile app solution is constrained by the processing power available on 

the mobile device. The analysis requires physical contact between the 

capture box and the patient’s foot, presenting an unacceptable infection 

risk. Additionally, the sample size of the experiment was small, with only 

65 images from real patients and hand-moulded wound models.

Brown et al. created the MyFootCare mobile app, used to promote patient 

self-care via personal goals, diaries and notifications.15 The app maintains 

a serial photographic record of the patient’s feet. DFU segmentation is 

completed using a semi-automated process, where the user manually 

delineates the DFU location and surrounding skin tissue. MyFootCare has 

the ability to automatically take photographs of feet by placing the phone 

on the floor. However, this feature was not used during Brown et al’s 

experiment,15 so its efficacy is unknown at this stage.

Current research in automated DFU detection using machine learning 

techniques suggests that the development of remote monitoring 

solutions may be possible using mobile and cloud technologies. Such 

an approach would help to address the current unmet medical need for 

automated, non-contact detection solutions.

Methods
This section discusses the DFU dataset, its expert labelling (ground truth), 

baseline approaches to benchmark the performance of detections and 

submission rules used in the DFUC 2020 challenge assessment methods. 

The DFUC 2020 dataset is publicly available for non-commercial research 

purposes only, and can be obtained by emailing a formal request to Moi 

Hoon Yap: m.yap@mmu.ac.uk All code used for the research in this 

paper can be obtained from the following repositories:

• Faster R-CNN: https://github.com/tensorflow/models/tree/master/

research/object_detection

• YOLOv5: https://github.com/mihir135/yolov5

• EfficientDet: https://github.com/xuannianz/EfficientDet

Dataset and ground truth
Foot images displaying DFU were collected from Lancashire Teaching 

Hospitals over the past few years. Three digital cameras were used 

for capturing the foot images: Kodak DX4530 (5 megapixel), Nikon 

D3300 (24.2 megapixel) and Nikon COOLPIX P100 (10.3 megapixel).  

The images were acquired with close-ups of the foot, using auto-focus 

without zoom or macro functions and an aperture setting of f/2.8 at a 

distance of around 30–40 cm with the parallel orientation to the plane of 

an ulcer. The use of flash as the primary light source was avoided, with 

room lights used instead to ensure consistent colours in the resulting 

photographs. The images were acquired by medical photographers with 

specialization in the diabetic foot, all with more than 5 years professional 

experience in podiatry. As a pre-processing stage, we discarded 

photographs that exhibited poor focus quality. We also excluded 

duplicates, identified by hash value for each file.

The DFUC 2020 dataset consists of 4,000 images, with 2,000 used for the 

training set and 2,000 used for the testing set. An additional 200 images 

were used for sanity checking; images that DFUC 2020 participants could 

use to perform initial experiments on their models before the release 

of the testing set. The training set consists of DFU images only, and the 

testing set comprised of images of DFU, other foot/skin conditions and 

images of healthy feet. The dataset is heterogeneous, with aspects 

such as distance, angle, orientation, lighting, focus and the presence of 

background objects all varying between photographs. We consider this 

element of the dataset to be important, given that future models will 

need to account for numerous environmental factors in a system being 

used in non-medical settings. The images were captured during regular 

patient appointments at Lancashire Teaching Hospitals foot clinics; 

therefore, some images were taken from the same subjects at different 

intervals. Thus, the same ulcer may be present in the dataset more than 

once, but at different stages of development, at different angles and 

lighting conditions.

The following describes other notable elements of the dataset, where a 

case refers to a single image.

• Cases may exhibit more than one DFU.

• Cases exhibit DFU at different stages of healing.

• Cases may not always show all of the foot.

• Cases may show one or two feet, although there may not always be 

a DFU on each foot.

• Cases may exhibit partial amputations of the foot.

• Cases may exhibit deformity of the foot of varying degrees (Charcot 

arthropathy).

• Cases may exhibit background objects, such as medical equipment, 

doctor’s hands, or wound dressings, but no identifiable patient 

information.

• Cases may exhibit partial blurring.

Figure 1: Experts’ annotation of the region of interest and 
the pathology label 

Image annotated via LabelImg.16

http://m.yap@mmu.ac.uk
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/mihir135/yolov5
https://github.com/xuannianz/EfficientDet
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• Cases may exhibit partial obfuscation of the wound by medical 

instruments.

• Cases may exhibit signs of debridement, the area of which is often 

much larger than the ulcer itself.

• Cases may exhibit the presence of all or part of a toenail within a 

bounding box.

• Cases exhibit subjects of a variety of ethnicities – training set:  

1,987 white, 13 non-white; testing set: 1,938 white, 62 non-white; 

sanity-check set: 194 white; 6 non-white.

• Cases may exhibit signs of infection and/or ischaemia.

• A small number of cases may exhibit the patient’s face. In these 

instances, the face has been blurred to protect patient identity.

• Cases may exhibit a time stamp printed on the image. If a DFU is 

obfuscated by a time stamp, the bounding box was adjusted to 

include as much of the wound as possible, while excluding the time 

stamp.

• Cases may exhibit imprint patterns resulting from close contact with 

wound dressings.

• Cases may exhibit unmarked circular stickers or rulers placed 

close to the wound area, used as a reference point for wound size 

measurement. Bounding boxes were adjusted to exclude rulers.

All training, validation and test cases were annotated with the location 

of foot ulcers in xmin, ymin, xmax and ymax coordinates (Figure 1). 

Two annotation tools were used to annotate the images: LabelImg16 

and VGG Image Annotator.17 These were used to annotate images 

with a bounding box indicating the ulcer location. The ground truth 

was produced by three healthcare professionals who specialize in 

treating diabetic foot ulcers and associated pathology (two podiatrists 

and a consultant physician with specialization in the diabetic foot, all 

with more than 5 years professional experience). The instruction for 

annotation was to label each ulcer with a bounding box. If there was 

disagreement on DFU annotations, the final decision was mutually 

settled with the consent of all.

In this dataset, the size of foot images varied between 1,600 x 1,200 and 

3,648 x 2,736 pixels. For the release dataset, we resized all images to  

640 x 480 pixels to reduce computational costs during training. Unlike the 

approach by Goyal et al.,7 we preserved the aspect ratio of the images 

using the high-quality anti-alias down-sampling filter method found in 

the Python Imaging Library.18 Figure 2A shows the original image with 

ground truth annotation. Figure 2B shows the resized image by Goyal et 

al.,7 where the ulcer size and shape changed. We maintained the aspect 

ratio while resizing, as illustrated in Figure 2C.

Benchmark algorithms
To benchmark predictive performance on the dataset, we conducted 

experiments with three popular deep learning object detection 

networks: faster R-CNN,19 You Only Look Once (YOLO) version 5,20 and 

EfficientDet.12,21 Each of these networks is described as follows.

Faster R-CNN was introduced by Ren et al.19 This network is comprised 

of three sub-networks: a feature extraction network, a region proposal 

network (RPN) and a detection network (R-CNN). The feature network 

extracts features from an image that are then passed to the RPN which 

uses selective search to generate a series of proposals. Selective search 

uses a hierarchical grouping algorithm to group similar regions using size, 

shape and texture.22 These proposals represent locations where objects 

(of any type) have been initially detected (regions of interest). The outputs 

from both the feature network and the RPN are then passed to the 

detection network, which further refines the RPN output and generates 

the bounding boxes for detected objects. Non-maximum suppression 

and bounding box regression are used to eliminate duplicate detections 

and to optimize bounding box positions.23

YOLO was introduced by Redmon et al.24 The authors focused on speed 

and real-time object detection. Since then, YOLO has become widely 

used in object detection with the latest versions being YOLOv425 and 

YOLOv5, produced by other authors. YOLOv5 requires an image to 

be passed through the network only once. A data loader is used for 

automatic data augmentation in three stages: (1) scaling, (2) colour 

space adjustment, and (3) mosaic augmentation. Mosaic augmentation 

combines four images into four tiles of random ratios, and helps to 

overcome the limitation of older YOLO networks’ ability to detect smaller 

objects. A single convolutional neural network is used to process multiple 

predictions and class probabilities. Non-maximum suppression is used to 

ensure that each object in an image is only detected once.26

EfficientNet (classification) and EfficientDet (object detection) were 

introduced by Tan et al.12,27 EfficientDet applies feature fusion to  

combine representations of an image at different resolutions. Learnable 

weights are applied at this stage so the network can determine which 

A

B

C

Figure 2: Illustration of the image resizing methods

A) Original image; (B) image resized by Goyal et al.;7 and (C) image resized by our method.
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combinations contribute to the most confident predictions. The final 

stage uses the feature network outputs to predict class and to plot 

bounding box positions. EfficientDet is highly scalable, allowing all three 

sub-networks (and image resolution) to be jointly scaled. This allows 

the network to be tuned for different target hardware platforms to 

accommodate variations in hardware capability.12,28

Assessment methods
To enable a fair technical comparison in the DFUC 2020 challenge, 

participants were not permitted to use external training data unless they 

agreed that it could be shared with the research community. Participants 

were also encouraged to report the effect of using a larger training 

dataset on their techniques.

For performance metrics, F1 score and mAP are used to assess the 

predictive performance of each detection model that has been trained 

using the training dataset. Participants were required to record all their 

detections (including multiple detections) in a log file. A true positive is 

obtained when the intersection over union (IoU) of the bounding box is 

greater or equal to 0.5, which is defined by:

where BBgroundTruth is the bounding box provided by the experts on 

ulcer location, and BBdetected is the bounding box detected by the 

algorithm.

F1 score is the harmonic mean of precision and recall, and provides 

a more suitable measure of predictive performance than the plain 

percentage of correct predictions in this application. F1 score is used, as 

false negatives and false positives are crucial, while the number of true 

negatives can be considered less important. False positives will result in 

additional cost and time burden to foot clinics, while false negatives will 

risk further foot complications. The relevant mathematical expressions 

are as follows:

Recall =
TP

TP + FN

Precision =
TP

TP + FP

where TP is the total number of true positives, FP is the total number of 

false positives and FN is the total number of false negatives.

In the field of object detection, mAP is a widely accepted performance 

metric. This metric is used extensively to measure the overlap percentage 

of the prediction made by the model and ground truth,2 and is defined as 

the average of average precision for all classes:

mAP =
AveP (q)

Q
∑Q

q=1

where a class represents the occurrence of a DFU, Q is the number 

of queries in the set (testing set images), and AveP(q) is the average 

precision for a given query, q. The exact method of mAP calculation can 

vary between networks and datasets, often depending on the size of the 

object that the network has been trained to identify. The definition in the 

final equation was deemed suitable for the DFUC 2020 challenge since 

the size of DFUs in the dataset was not constant.

All missing results, e.g. images with no labelled coordinates, are treated 

as if no DFU had been detected on the image. We evaluated the 

performance of the baseline algorithms without any post-processing. 

First, we compared the precision, recall, F1 score and mAP of the baseline 

algorithms at IoU ≥0.5; we then compared the mAP at IoUs of 0.5–0.9, 

with an increment of 0.1.

Benchmark experiments
For faster R-CNN, we assessed the performance of three different deep 

learning network backbone architectures: ResNet101 (residual neural 

network 101), Inception-v2-ResNet101 and R-FCN (region-based fully 

convolutional network). For the experimental settings, we used a batch 

size of 2 and ran gradient descent for 100 epochs initially to observe 

the loss. We began with a learning rate of 0.002, then reduced this to 

0.0002 in epoch 40, and subsequently to 0.00002 in epoch 60. We trained 

the models for 60 epochs as this was the point at which we observed 

network convergence.

For the EfficientDet experiment, training was completed using Adam 

stochastic optimization, with a batch size of 32 for 50 epochs (1,000 steps 

per epoch) and a learning rate of 0.001. The EfficientNet-B0 network 

architecture, pretrained on ImageNet, was used as the backbone during 

training. Random transforms were used as a pre-processing stage to 

provide automatic data augmentation. To benchmark the performance of 

the YOLO network on our dataset, we implemented YOLOv5. This is due 

to the simplicity in installation and superior training and inference times 

compared to older versions of the network. For our implementation, we 

used a batch size of 8, and a pre-trained model from MS COCO YOLOv5s 

provided by the originator of YOLOv5.20

The system configuration used for the R-FCN, faster R-CNN ResNet-101, 

faster R-CNN Inception-v2-ResNet101 and YOLOv5 experiments were: (1) 

hardware: CPU – Intel i7-6700 at 4.00Ghz, GPU – NVIDIA TITAN X 12Gb, 

RAM – 32GB DDR4 (2) software: Ubuntu Linux 16.04 and Tensorflow. 

The system configuration used for the EfficientDet experiment was: (1) 

hardware: CPU – Intel i7-8700 at 4.6Ghz, GPU – EVGA GTX 1080 Ti SC 

11GB GDDR5X, RAM – 16GB DDR4 (2) software: Ubuntu Linux 20.04 LTS 

with Keras and Tensorflow.

Results
For the training set, there were a total of 2,496 ulcers. A number of 

images exhibited more than one foot, or more than one ulcer, hence the 

discrepancy between the number of images and the number of ulcers. 

The size distribution of the ulcers in proportion to the foot image size 

is presented in Figure 3. We observed that the size for the majority of 

ulcers (1,849 images, 74.08%) was <5% of the image size, indicating that 

the size of ulcers was relatively small. When conducting further analyses 

on these images, we found that the majority of ulcers (1,250 images, 

50.08%) were <2% of the image size.

The trained detection models detected single regions with high 

confidence, as illustrated in Figure 4. Additionally, each trained model 

detected multiple regions, as illustrated in Figure 5. Table 1 compares 

the performance of the benchmark algorithms in recall, precision,  

F1 score and mAP. The faster R-CNN networks achieved high recall, 

with faster R-CNN Inception-v2-ResNet101 achieving the best result of 

0.7554. However, the precision is lower compared with other networks 
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Figure 3: The ratio of annotated diabetic foot ulcers to foot images in the training set

Figure 4: Illustration of single detection results Figure 5: Illustration of multiple detection results
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due to the high number of false positives. EfficientDet has the best 

precision of 0.6919, which is comparable with its recall of 0.6939. When 

comparing the F1 score, EfficientDet achieved the best result (0.6929). 

However, it had the lowest mAP (0.6216). The faster R-CNN networks 

achieved higher mAP, with the best result of 0.6596 achieved by faster 

R-CNN R-FCN.

To further analyze the results, Table 2 compares the performance of the 

networks on different IoU thresholds, from 0.5 to 0.9 with an increment 

of 0.1. While other networks achieved better recall at 0.5 IoU, EfficientDet 

shows a better trade-off between recall and precision, which yields the 

best F1 score. In general, faster R-CNN networks achieved better mAP at 

0.5 and remain the leader for mAP at 0.6 to mAP at 0.9 as shown in Table 

2. It is also noted that the F1 score for faster R-CNN is better than that of 

EfficientDet at 0.7 onwards. Figure 6 shows two easy cases detected by 

all networks, while Figure 7 shows two difficult cases that were missed 

by all networks.

Discussion
In this paper, we present the largest publicly available DFU dataset 

together with baseline results generated using three popular  

deep-learning object-detection networks that were trained using the 

dataset. No manual pre-processing, fine-tuning or post-processing 

steps were used beyond those already implemented by each  

network. We observed that the networks achieved comparable  

results.  Superior results may be achievable by using different anchor 

settings, for example, with YOLOv5, or by automated removal of 

duplicate detections.

Table 2: Comparative performance of different networks for diabetic foot ulcer detection on different  
intersection-over-union thresholds

Method IoU ≥0.5 IoU ≥0.6 IoU ≥0.7 IoU ≥0.8 IoU ≥0.9

F1 mAP F1 mAP F1 mAP F1 mAP F1 mAP

FRCNN R-FCN 0.6784 0.6596 0.6044 0.5618 0.4829 0.4044 0.2705 0.1487 0.0534 0.009

FRCNN ResNet101 0.6623 0.6518 0.5931 0.5661 0.4701 0.4087 0.2703 0.1689 0.0551 0.0112

FRCNN Inc-Res 0.6716 0.6462 0.5902 0.5385 0.4592 0.3827 0.2616 0.1644 0.0483 0.0095

YOLOv5 0.6612 0.6304 0.5898 0.5353 0.4418 0.3420 0.2355 0.1175 0.0383 0.0046

EffDet 0.6929 0.6216 0.6076 0.5143 0.4710 0.3503 0.2505 0.2167 0.0343 0.0031

EffDet = EfficientDet; F1 = harmonic mean of precision and recall; FRCNN Inc-Res = faster region-based convolutional neural network Inception-v2-ResNet101;  
IoU = intersection over union; mAP = mean average precision; R-FCN = region-based fully convolutional network; ResNet = residual neural network; YOLOv5 = You Only Look 
Once version 5.

Table 1: Performance of the benchmark algorithms on the testing set   

Benchmark algorithm Recall Precision F1 score mAP

FRCNN R-FCN 0.7511 0.6186 0.6784 0.6596

FRCNN ResNet101 0.7396 0.5995 0.6623 0.6518

FRCNN Inception-v2-ResNet101 0.7554 0.6046 0.6716 0.6462

YOLOv5 0.7244 0.6081 0.6612 0.6304

EffDet 0.6939 0.6919 0.6929 0.6216

FRCNN Inception-v2-ResNet101 achieved the best recall, EffDet achieved the best precision and F1 score, and FRCNN R-FCN achieved the highest mAP. 

EffDet = EfficientDet; F1 = harmonic mean of precision and recall; FRCNN = Faster region-based convolutional neural network; mAP = mean average precision;  
R-FCN = region-based fully convolutional network; ResNet = residual neural network; YOLOv5 = You Only Look Once version 5.

A B

Figure 6: Easy cases where wounds are visible and detected by all networks
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Non-DFU images were included in our testing dataset to challenge the 

ability of each network. These images show various skin conditions on 

different regions of the body, included images of keloids, onychomycosis 

and psoriasis, many of which share common visual traits with DFU. For the 

development of future models, we will add images of non-DFU conditions 

into a second classifier so that the model is more robust. Future work 

will assess the efficacy of the other available EfficientDet backbones on 

our dataset. We will also investigate the ability of generative adversarial 

networks to generate convincing images of DFUs that could be used as 

data augmentation. We also acknowledge that there is a bias in the dataset, 

given that the vast majority of subjects are white. We intend to address 

this issue in future work by working with international collaborators to 

obtain images that exhibit a variety of skin tones.

Conclusion
This paper presents the largest DFU dataset made publicly available 

for the research community. The dataset was assembled for the DFUC 

2020 challenge, held in conjunction with the MICCAI 2020 conference, 

and we report baseline results for the DFU test set using state-of-the-art 

object detection algorithms. The dataset will continue to be available for 

research after the challenge, in order to motivate algorithm development 

in this domain. Additionally, we will report the results of the challenge in 

the near future. For our longer-term plan, we will continue to collect and 

annotate DFU image data. q

A B

Figure 7: Difficult cases where wounds are not easily visible and not detected by all networks
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