Progresso na gestão da CKD em pacientes com diabetes tipo 2: como os ARMs não esteroides

podem mudar o paradigma do tratamento?

Isenção de responsabilidade

- Produtos não aprovados ou usos não aprovados de produtos aprovados podem ser discutidos pelo corpo docente; essas situações podem refletir a condição de aprovação em uma ou mais jurisdições.
- O corpo docente apresentador foi aconselhado pela USF Health e touchIME a garantir que não sejam reveladas quaisquer referências feitas a uso não rotulado ou não aprovado
- Nenhum endosso pela USF Health ou touchIME para quaisquer produtos não aprovados ou usos não aprovados, seja em menção feita ou implícita desses produtos ou usos em atividades da USF Health ou da touchIME
- A USF Health e a touchIME não aceitam qualquer responsabilidade por eHRos ou omissões

Painel de especialistas

Prof. Christoph Wanner

University Hospital of Würzburg, Würzburg, Alemanha

Prof. Javed Butler

Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, EUA

Prof. Janet McGill

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, EUA

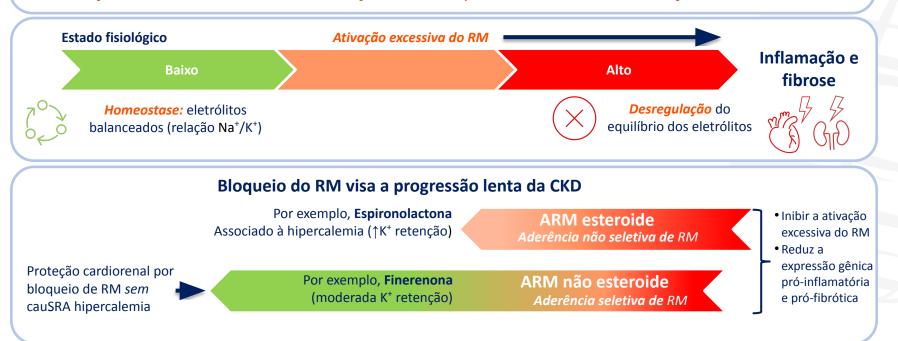
Agenda

Por que o cenário de tratamento para pacientes com T2D e CKD ainda requer terapias novas?

Por que os ARMs não esteroides estão sendo investigados em pacientes com T2D e CKD e quais são os dados mais recentes?

Como os ARMs não esteroides abordam necessidades não atendidas na T2D e CKD e podem se encaixar no paradigma de tratamento atual?

 Gestão abrangente de T2D e CKD para reduzir riscos de progressão de doença renal e CVD



BRA, bloqueador do receptor de angiotensina II; CKD, doença renal crônica; CVD, doença cardiovascular; ECA, enzima conversora de angiotensina; GLP-1 RA, agonistas do receptor do peptídeo semelhante ao glucagon 1; SRA, sistema renina-angiotensina; SGLT2, inibidores do cotransportador de sódio e glicose do tipo 2; TFGe, taxa de filtração glomerular estimada.

Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. *Kidney Int.* 2020;98(Suppl. 4):S1–S115.

Justificativa para bloqueio do SR em pacientes com T2D e CKD

- A expressão do gene controla o fluido, o eletrólito e a homeostase hemodinâmica
- A ativação excessiva do RM causa inflamação e fibrose que danificam o rim e o coração

Estudos de resultado CV e renal em pacientes com T2D e CKD

•				
	FIDELIO-DKD ¹	FIGARO-DKD ^{2.3}	Gp DAPA-CKD4	Gredence⁵
Tratamento	Finerenona ou PBO	Finerenona ou PBO	Dapagliflozin ou PBO	Canagliflozin ou PBO
População de pacientes	N=5.734; CKD + T2D	N=7.437; CKD + T2D	N=4.304; CKD ± T2D	N= 4.401; CKD + T2D ± CVD anterior
UARC (mg/g) TFGe (mL/min/1.73 m²)	UARC 30-<300 e TFGe 25-<60 ou UARC 300-≤5000 e TFGe 25-<75	UARC 30-<300 e TFGe 25-≤90 ou UARC 300-≤5.000 e TFGe ≥60	UARC 200–≤5.000 e TFGe 25–≤75	UARC 300-≤5.000 e TFGe 30-<90
Resultado do composto primário	Início de insuficiência renal, declínio sustentado ≥40% de TFGe ou morte renal HR 0,82, p=0,001 versus PBO	Início do tempo para a morte CV, IM não fatal, acidente vascular cerebral não fatal ou HIC HR 0,87, p=0,03 versus PBO Em grande parte impulsionado por 29% de redn em HIC	Suportado ≥50% de declínio da TFGe, DRET e morte renal ou CV HR 0,61, p<0,001 versus PBO	DRET, duplicação da sCr, renal ou morte CV HR 0,70, p=0,00001 versus PBO
Principal endpoint (s) secundário:	Composto de morte CV, infarto do miocárdio não fatal, acidente vascular cerebral não fatal ou	Composto de início de insuficiência renal, declínio sustentado ≥40% de TFGe	Declínio suportado de ≥50% de TFGe, DRET e morte renal ou CV HR 0,56, p<0,001 versus PBO	Morte CV ou HIC HR 0,69, p<0,001 versus PBO Morte CV, IM ou AVC

CKD, doença renal crônica; CV, cardiovascular; CVD, doença cardiovascular; DRET, doença renal em estágio terminal, HIC, hospitalização por insuficiência cardíaca; HR, porcentagem de risco; IM, infarto do miocárdio; NS, não significativa; PBO, placebo; sCr, creatinina sérica; T2D, diabetes tipo 2; TFGe, taxa de filtração glomerular estimada; UARC, relação albumina-creatinina urinária.

Morte CV ou HIC

HR 0,71, p=0,009 versus PBO

HR 0,69, P=0,004 versus PBO

Mortalidade por todas as causas

HR 0,80, p=0,01 versus PBO

HR 0,61, p<0,001 versus PBO

ENDOCRINOLOGY®

HIC

1. Bakris G, et al. N Engl J Med. 2020;383:2219-29; 2. Ruilope L, et al. Am J Nephrol. 2019;50:345-56; 3. Pitt B, et al. N Engl J Med. 2021. DOI: 10.1056/NEJMoa2110956;

ou morte renal

HR 0,87 (p=NS)

4. Heerspink H, et al. N Engl J Med. 2020;383:1436–46; 5. Perkovic V, et al. N Engl J Med. 2019;380:2295–306.

hospitalização por insuficiência

HR 0,86, p=0,03 versus PBO

cardíaca

FIDELITY: Meta-análise de FIDELIO-DKD e FIGARO-DKD

Avaliar o estágio de doença renal e eficácia da finerenona em CV composto e endpoint renal

População de pacientes

13.026 pacientes com CKD + T2D

- Tratado com bloqueio SRA
- Soro K⁺ ≤ 4,8 mmol/L

Finerenona ou PBO

Resultado do composto primário

Início do tempo para a morte CV, IM não fatal, acidente vascular cerebral não fatal ou HIC, e sua relação com UARC/TFGe

Acompanhamento: 3 anos

HR 0,86 p=0,0018 versus PBO

Resultado de composição secundária

Início de insuficiência renal, declínio ≥ de 57% de TFGe durante 4 semanas ou morte renal, e sua relação com a UARC/TFGe

HR 0,77 p=0,0002 versus PBO

Resultados de segurança

- Resultados de segurança geralmente similares entre os braços de tratamento
- Hipercalemia: 14,0% com finerenona versus 6,9% com PBO
 - A descontinuação do tratamento devido à hipercalemia não foi frequente: 1,7% versus 0,6%

CKD, doença renal crônica; CV, cardiovascular; HIC, hospitalização por insuficiência cardíaca; HR, razão de risco; IM, infarto do miocárdio; PBO, placebo; SRA, sistema renina-angiotensina; T2D, diabetes tipo 2; TFGe, taxa de filtração glomerular estimada; UARC, relação albumina-creatinina urinária.

Filippatos g, Agarwal R. apresentado no Congresso ESC 2021. 28 Aug 2021. Disponível em:

www.escardio.org/The-ESC/Press-Office/Press-releases/Finerenone-benefits-patients-with-diabetes-across-spectrum-of-kidney-disease (acessado em 4 de outubro de 2021).

Subanálise de FIGARO-DKD: efeito da finerenona por uso basal SGLT2i

O status de TFGe e o uso de medicamentos basais diferem entre os grupos

% pacientes na linha de base	Sem SGLT2i (n=6.734)	SGLT2i (n=618)
TFGe <60 mL/min/1,73 m ²	39	29
Estatinas	69	83
Metformina	68	83
GLP-1 SRA	6.4	19.3

A finerenona teve benefícios CV e renal independentemente da, e em combinação com, SGLT2is

Finerenona versus PBO	Sem SGLT2i (n=6.734)	SGLT2i (n=618)	P interação
Alteração na UARC, %	-32	-41	0,04
Resultado composto CV, HR	0,89	0,49	0,11
Resultado composto renal, HR ≥40% de redução de TFGe ≥57% de redução de TFGe	0,88 0,80	0,70 0,51	0,69 0,28

CV, cardiovascular; GLP-1 RA, agonistas do receptor do peptídeo semelhante ao glucagon 1; HR, taxa de risco; PBO, placebo; SGLT2i, inibidores do cotransportador sódio-glicose do tipo 2; TFGe, taxa de filtração glomerular estimada; UARC, relação albumina-creatinina urinária.

McGill J. foi apresentado na reunião virtual do EASD 2021. 1 de outubro de 2021. Disponível em: https://virtualcongress.easd.org/program/easd/easd2021/en-GB (accessado em 4 de outubro de 2021).