touchEXPERT OPINIONS

Improving the alpha-mannosidosis patient journey

Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by touchIME to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by USF or touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in touchIME activities
- USF and touchIME accept no responsibility for errors or omissions

Improving first steps in the patient journey: How important is early recognition of alpha-mannosidosis?

Professor Barbara K Burton

Professor of Pediatrics Northwestern University Feinberg School of Medicine Chicago, IL, USA

Why is early recognition of alpha-mannosidosis so clinically challenging?

• Challenges in clinical recognition of AM

Alpha-mannosidosis is a

rare 'ultra-orphan'

lysosomal storage disorder^{1,2}

Estimated prevalence³

0.1 in 100,000

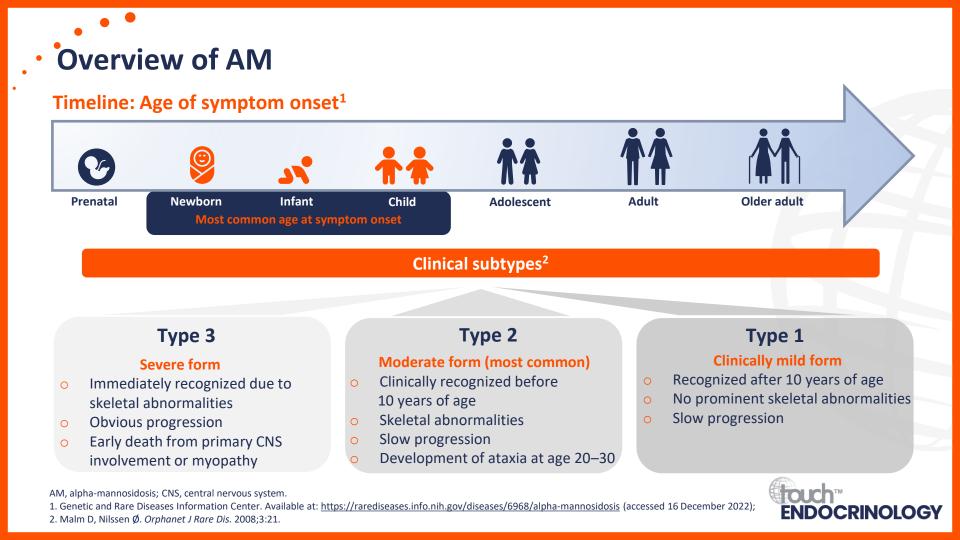
....

Rarity and varying severity of disease presents clinical challenges⁴

Delayed recognition⁴

Underdiagnosis⁵

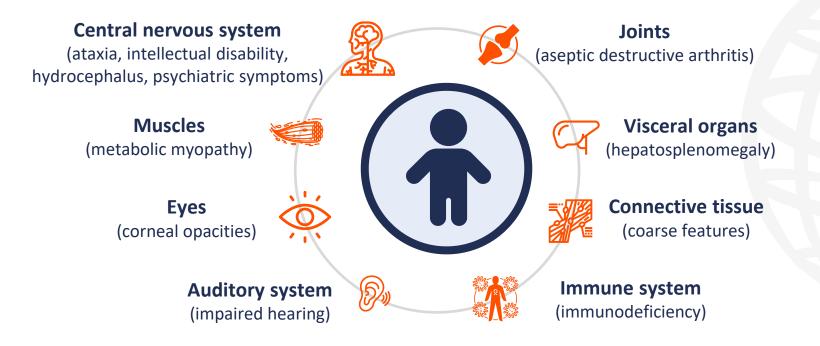
AM, alpha-mannosidosis.


1. Garbade SF, et al. J Inherit Metab Dis. 2021;44:99–109; 2. Zielonka M, et al. J Inherit Metab Dis. 2019;42:975–83;

3. Orphanet Report Series. Available at: <u>www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_decreasing_prevalence_or_cases.pdf</u> (accessed 16

December 2022); 4. Hennermann JB, et al. Orphanet J Rare Dis. 2022;17:287.5. Wiesinger T, et al. Mol Genet Metab. 2020;130:149–52.

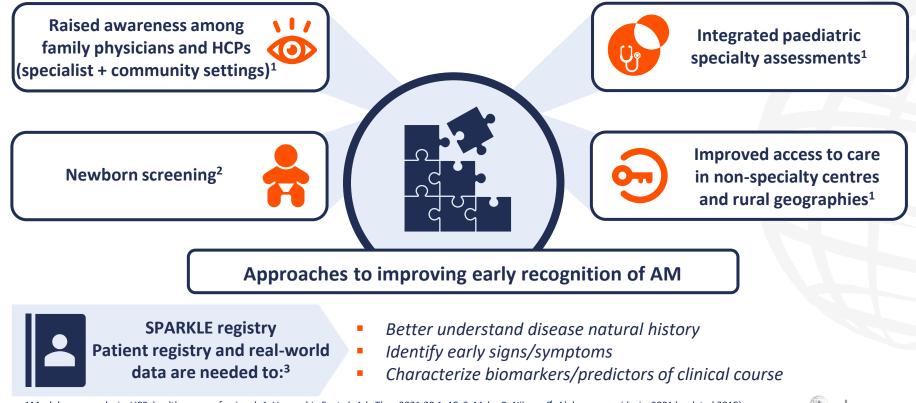
What do we currently know about the natural history of alpha-mannosidosis?



What are the key signs and symptoms associated with alpha-mannosidosis that we should look out for in the clinic?

Prominent signs and symptoms in patients with AM

Organ systems affected



AM, alpha-mannosidosis. 1. Zielonka M, et al. *J Inherit Metab Dis*. 2019;42:975–83.

How could we improve early recognition of alpha-mannosidosis, now and in the future?

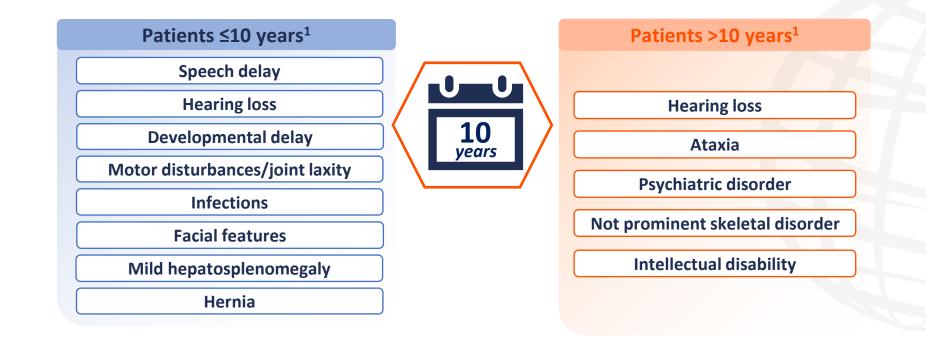
• Addressing barriers to early recognition of AM

AM, alpha-mannodosis; HCP, health care professional. 1. Verrecchia E, et al. Adv Ther. 2021;38:1–10; 2. Malm D, Nilssen Ø. Alpha-mannosidosis. 2001 (updated 2019). Available at: <u>www.ncbi.nlm.nih.gov/books/NBK1396/</u> (accessed 16 December 2022); 3. Hennermann JB, et al. Orphanet J Rare Dis. 2020;15:271.

Supporting early diagnosis: What more is needed?

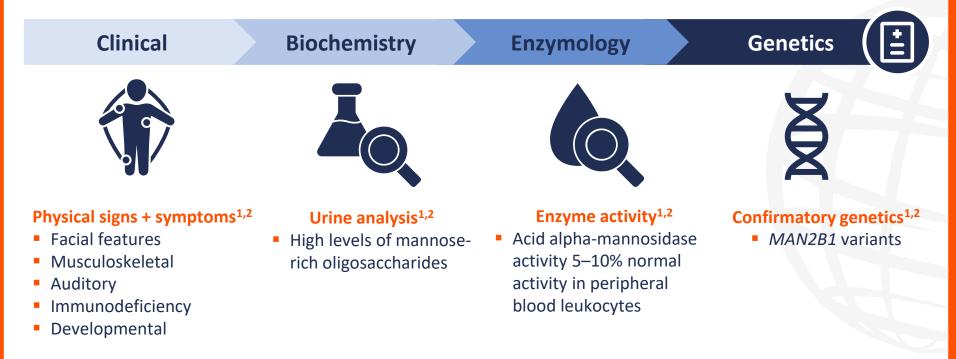
Professor Barbara K Burton

Professor of Pediatrics Northwestern University Feinberg School of Medicine Chicago, IL, USA



What warrants an index of clinical suspicion for alpha-mannosidosis? Does this change with age of presentation?

Prominent signs and symptoms suggestive of AM



AM, alpha-mannosidosis. 1. Guffon N, et al. *Mol Genet Metab*. 2019;126:470–4.

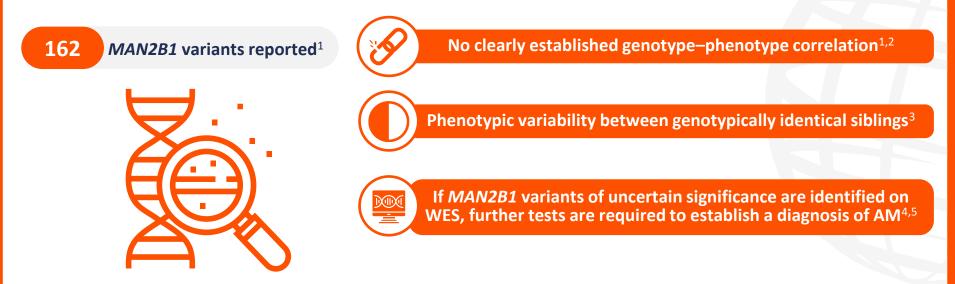
How do we reach a diagnosis of alpha-mannosidosis?

• Route to diagnosis in AM

AM, alpha-mannosidosis; MAN2B1, mannosidase alpha class 2B member 1.

1. Malm D, Nilssen Ø. Alpha-mannosidosis. 2001 (updated 2019). Available at www.ncbi.nlm.nih.gov/books/NBK1396/ (accessed 16 December 2022);

2. Guffon N, et al. Mol Genet Metabol. 2019;126:470-4.



How informative are genetic tests for pathogenic variants to guide clinical management decisions in alpha-mannosidosis?

Role of MAN2B1 pathogenic variants in AM

Deficient alpha-mannosidase enzyme activity owing to mutations in the MAN2B1 gene (location: chromosome 19p13.13)^{1,2}

AM, alpha-mannosidosis; MAN2B1, mannosidase alpha class 2B member 1; WES, whole-exome sequencing.

1. Hennermann JB, et al. Orphanet J Rare Dis. 2022;17:287; 2. Lipinski P, et al. Mol Genet Metab Rep. 2022;30:100826; 3. Borgwardt L, et al. Orphanet J Rare Dis. 2015;10:70; 4. Malm D, Nilssen Ø. Alpha-mannosidosis. 2001 (updated 2019). Available at: www.ncbi.nlm.nih.gov/books/ (accessed 16 December 2022); 5. Correspondence with faculty (Prof. Barbara K Burton; 17 January 2023).

How can we address the challenges associated with timely and accurate differential diagnosis?

Differential diagnosis of AM from other LSDs

Clinical and laboratory features of the disorders¹

Overlapping with AM	Disorders	Distinguishing from AM	
Coarse facial features, dysostosis multiplex, intellectual disability	Mucopolysaccharidoses	Short stature, contractures	
Coarse facial features, dysostosis multiplex	Mucolipidosis II	Short stature, failure to thrive	
Coarse facial features, dysostosis multiplex	Mucolipidosis III alpha/beta	Short stature, normal-to-mildly impaired cognitive development	
Coarse facial features, dysostosis multiplex, intellectual disability	Sialidosis	Cherry red spot of the macula	
Hypotonia, coarse facial features, developmental delay, frequent upper- respiratory infections	Sialuria	Joint stiffness, seizures, microcytic anaemia	
Coarse facial features, thickened ribs	Cantú syndrome	Heart defects, hypertrichosis	

AM, alpha-mannosidosis; LSD, lysosomal storage disorder.

1. Malm D, Nilssen Ø. Alpha-mannosidosis. 2001 (updated 2019). Available at: www.ncbi.nlm.nih.gov/books/NBK1396/ (accessed on 19 December 2022).

Why is a timely and accurate diagnosis so important in alpha-mannosidosis?

• Optimizing outcomes in AM

 ${f Q}$ Early diagnosis is crucial to support outcomes with treatment beyond symptom management and supportive care^{1,2}

If untreated, prognosis remains poor, but many patients live to ≥50 years of age²

~~

Progressive disease course with cognitive, neuromuscular and skeletal deterioration over several decades²

Most patients eventually become wheel-chair dependent²

Pneumonia has been the primary cause of death during recent decades in untreated patients, followed by cancer¹

Hearing loss as one of the first noted symptoms is congenital and non-progressive during disease course³

Untreated patients have worsening white matter abnormalities, diminished myelination, and gliosis⁴

Delays in diagnosis and treatment can lead to cumulative morbidity that may require long-term residential care needs⁵

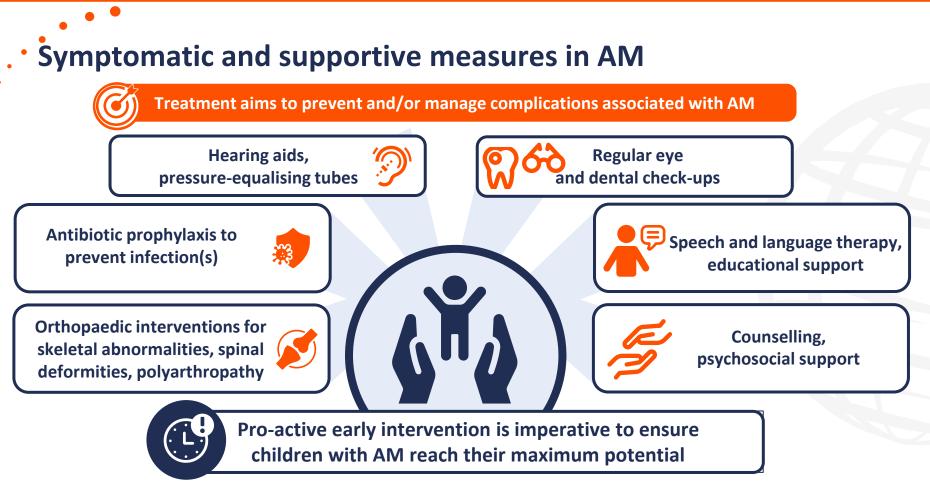
AM, alpha-mannosidosis.

1. Hennermann JB, et al. Orphanet J Rare Dis. 2022;17:287; 2. Guffon N, et al. Mol Genet Metabol. 2019;126:470-4;

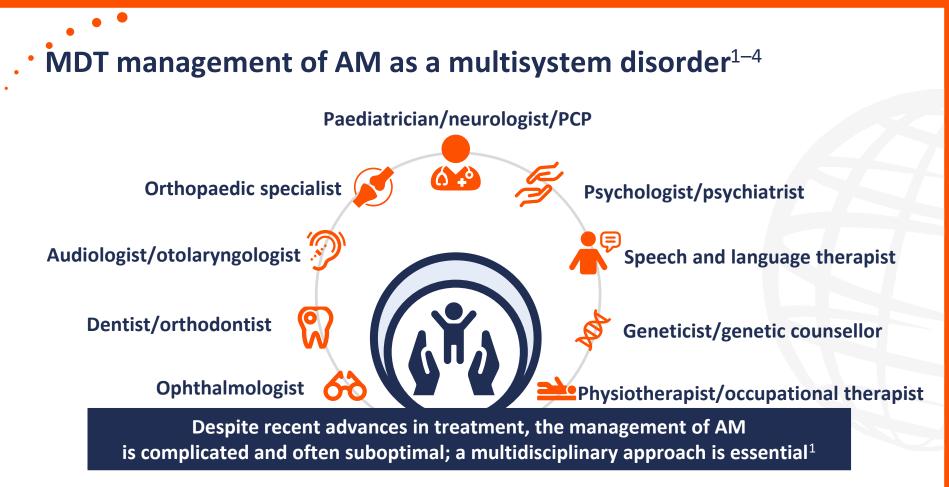
3. Lipinski P, et al. *Mol Genet Metab Rep.* 2022;30:100826; 4. Naumchik BM, et al. *Cells.* 2020;9:1411; 5. Verrecchia E, et al. *Adv Ther.* 2021;38:1–10.

Optimizing outcomes in alpha-mannosidosis: How might current and emerging targeted therapies address long-term needs?

Professor Barbara K Burton


Professor of Paediatrics Northwestern University Feinberg School of Medicine Chicago, IL, USA

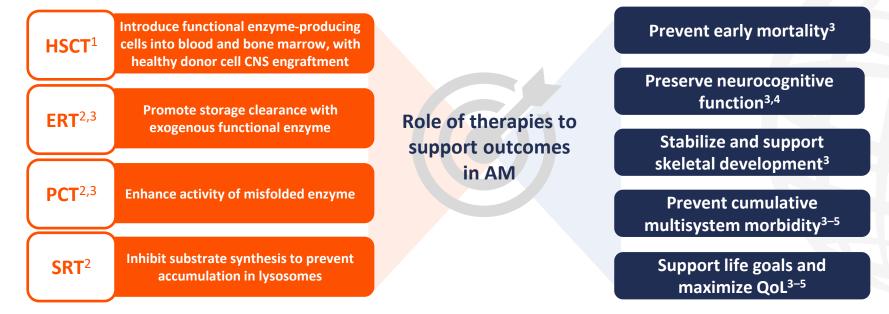
What is the current standard of care for alpha-mannosidosis?



AM, alpha-mannosidosis. NORD. Alpha-mannosidosis. 2018. Available at: https://rarediseases.org/rare-diseases/alpha-mannosidosis/ (accessed 19 December 2022).

Why is multidisciplinary management so important?

AM, alpha-mannosidosis; MDT, multidisciplinary team; PCP, primary care provider. 1. Guffon N, et al. *Mol Genet Metabol*. 2019;126:470–4; 2. Genetic and Rare Diseases Information Center. Available at: <u>https://rarediseases.info.nih.gov/diseases/6968/alpha-mannosidosis</u> (accessed 20 December 2022); 3. Adam J, et al. *Mol Genet Metabol*. 2019;20:100480.



How might therapies address long-term needs in alpha-mannosidosis?

Harnessing therapies to address long-term needs in AM

Approaches to minimize storage material accumulation and irreversible pathology

AM, alpha-mannosidosis; CNS, central nervous system; ERT, enzyme replacement therapy; HSCT, haematopoietic stem cell transplant; PCT, pharmalogical chaperone therapy; QoL, quality of life; SRT, substrate reduction therapy.

1. Naumchik BM, et al. Cells. 2020;9:1411; 2. Diaz JCL, et al. Int J Mol Sci. 2022;1:232; 3. Ceccarini V, et al. Int J Mol Sci. 2018;19:1500;

4. Verrecchia E, et al. Adv Ther. 2021;38:1-10; 5. Cathey S, et al. JIMD Rep. 2019;50:44-9.

What therapy approaches are currently available?

Current treatment landscape in AM

_	_	
C	\sim	т
 _	_	

Introduce functional enzyme-producing cells into blood and bone marrow, with healthy donor cell CNS engraftment

Data are limited but studies show HSCT attenuates CNS disease, alleviating neuropathology¹

> **Minimizes pathological lysosomal accumulation** of mannose-rich oligosaccharides and associated morbidity, notably:

neurologic function and skeletal development¹

88% survival rate with stable engraftment (5.5 years median follow-up) n = 17²

Patients achieved cognitive developmental progress post-HSCT²

ERT³

Promote storage clearance with exogenous functional enzyme

rhLAMAN (velmanase alfa) studies: Long-term data⁴

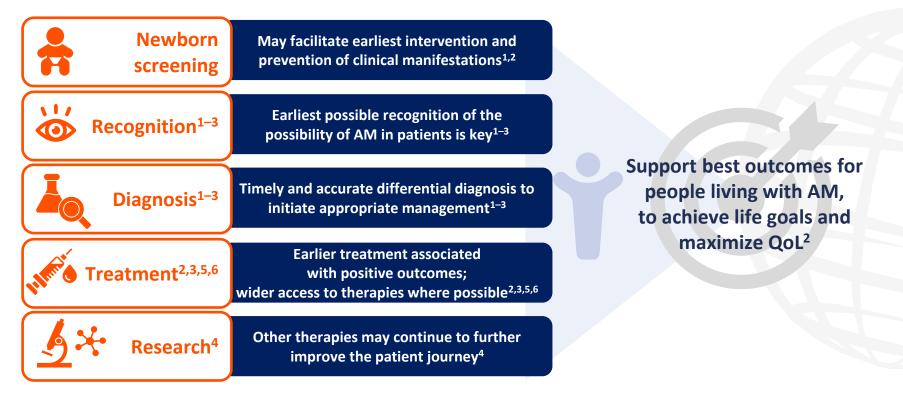
Velmanase alfa improved biochemical and functional measures that were maintained up to 4 years

sOLIGO clearance (Δ baseline to 12 months) -72.7%; 95% CI -81.4, -64.1; p<0.001

3MSCT (Δ baseline to 12 months) **+9.3%**; 95% CI 2.14, 16.5; p=0.013

Early treatment during paediatric age associated with better functional outcomes

Δ, mean change; 3MSCT, 3-minute stair climb test; AM, alpha-mannosidosis; CI, confidence interval; CNS, central nervous system; ERT, enzyme replacement therapy; HSCT, haematopoietic stem cell transplant; rhLAMAN, recombinant human lysosomal alphamannosidase; sOLIGO, serum oligosaccharides. 1. Naumchik BM. et al. Cells. 2020;9:1411; 2. Mvnarek M. et al. Bone Marrow Transpl. 2012;47:352-9: 3. Ceccarini V. et al. Int J Mol Sci. 2018;19:1500; 4. Lund AM. et al. J Inherit Metab Dis. 2018;41:1225-33.



n = 31

What role might enzyme replacement and pharmacological chaperone therapies play in the future management of alpha-mannosidosis?

Improving outcomes: Continuing our focus on earlier intervention

AM, alpha-mannosidosis; ERT, enzyme replacement therapy; HSCT, haematopoietic stem cell transplant; QoL, quality of life. 1. Malm D, Nilssen Ø. Alpha-mannosidosis. 2001 (updated 2019). Available at: <u>www.ncbi.nlm.nih.gov/books/NBK1396/</u>; 2. Guffon N, et al. *Mol Genet Metabol.* 2019;126:470–4; 3. Adam J, et al. *Mol Genet Metabol.* 2019;20:100480; 4. Garbade SF, et al. *J Inherit Metab Dis.* 2021;44:99–109; 5. Ceccarini V, et al. *Int J Mol Sci.* 2018;19:1500; 6. Lund AM, et al. *J Inherit Metab Dis.* 2018;41:1225–33).

