
TOUCH MEDICAL MEDIA Journal Publication Date: 25 May 2023 16

Review Diabetes

Keywords

Alzheimer's disease, antidiabetic drugs, glucagon- like peptide 1 receptor 
agonists, neuronal degeneration, pathophysiological links, type 2 diabetes

Disclosures: Ides M Colin has served on advisory boards for Novo Nordisk, Boehringer 
Ingelheim, Sanofi, Abbott, Eli Lilly, Astra Zeneca, and Novartis and received honoraria for 
lectures. He acted as principal investigator in various clinical trials for Novo Nordisk and 
Sanofi. Jose- Antonio Elosegi has served on advisory boar ds for Sanofi and Bristol Meyer 
Squibb, and has received honoraria for lectures. He has acted as principal investigator in 
various clinical trials for Genzyme and Janssen. Lidia W Szczepanski and Anne- Catherine 
Gérard have no financial or non- financial relationships or activities to declare in relation 
to this article.

Review process: Double- blind peer review.

Compliance with ethics: This study involves a review of the literature and did not 
involve any studies with human or animal subjects performed by any of the authors.

Data availability: Data sharing is not applicable to this article as no datasets were 
generated or analysed during the writing of this article.

Authorship: The named authors meet the International Committee of Medical Journal 
Editors (ICMJE) criteria for authorship of this manuscript, take responsibility for the 
integrity of the work as a whole, and have given final approval for the version to be 
published.

Access: This article is freely accessible at touchENDOCRINOLOGY.com. 
© Touch Medical Media 2023

Received: 24 February 2023

Accepted: 5 April 2023

Published online: 23 May 2023

Citation: touchREVIEWS in Endocrinology. 2023;19(1):16–24
Corresponding author: Ides M Colin, Endocrino- Diabetology Research Unit, 
Department of Internal Medicine, Centre Hospitalier Régional Mons- Hainaut/Groupe 
Jolimont, Mons Belgium/Groupe Helora, 5, Av. B. Constantinople, B- 7000 Mons, Belgium.  
E:  Ides. Michel. COLIN@ jolimont. be

Support: No funding was received in the publication of this article.

Emerging Evidence for the Use of Antidiabetic 
Drugs, Glucagon- like Peptide 1 Receptor Agonists, 
for the Treatment of Alzheimer’s Disease
Ides M Colin,1 Lidia W Szczepanski,1 Anne- Catherine Gérard1,2 and Jose- Antonio Elosegi3

1. Endocrino- Diabetology Research Unit, Department of Internal Medicine, Centre Hospitalier Régional Mons- Hainaut/Groupe Jolimont, Mons 
Belgium/Groupe Helora, Mons, Belgium; 2. Group of Animal Molecular and Cellular Biology, Louvain Institute of Biomolecular Science and 
Technology, Université Catholique de Louvain, Louvain- La- Neuve, Belgium; 3. Neurology Unit, Centre Hospitalier Universitaire Ambroise Paré, 
Mons Belgium/Groupe Helora, Mons, Belgium

From an epidemiological and pathophysiological point of view, Alzheimer’s disease (AD) and type 2 diabetes (T2DM) should be considered 
'sister' diseases. T2DM significantly increases the risk of developing AD, and the mechanisms of neuronal degeneration themselves 
worsen peripheral glucose metabolism in multiple ways. The pathophysiological links between the two diseases, particularly cerebral 

insulin resistance, which causes neuronal degeneration, are so close that AD is sometimes referred to as 'type 3 diabetes'. Although the 
latest news on the therapeutic front for AD is encouraging, no treatment has been shown to halt disease progression permanently. At best, 
the treatments slow down the progression; at worst, they are inactive, or cause worrying side effects, preventing their use on a larger scale. 
Therefore, it appears logical that optimizing the metabolic milieu through preventive or curative measures can also slow down the cerebral 
degeneration that characterizes AD. Among the different classes of hypoglycaemic drugs, glucagon- like peptide 1 receptor agonists, which 
are widely used in the treatment of T2DM, were shown to slow down, or even prevent, neuronal degeneration. Data from animal, preclinical, 
clinical phase II, cohort and large cardiovascular outcomes studies are encouraging. Of course, randomized clinical phase III studies, which 
are on- going, will be essential to verify this hypothesis. Thus, for once, there is hope for slowing down the neurodegenerative processes 
associated with diabetes, and that hope is the focus of this review.

Type 2 diabetes (T2DM) is a disease with a complex aetiopathogenesis 

that leads to a wide variety of metabolic disorders. This includes, by 

definition, high plasma glucose levels, but also elevated blood pressure, 

dyslipidaemia, cardiorenal complications and strokes. All of these 

disorders, beyond the progressive beta cell failure, derive from insulin 

resistance (IR).1 Among the many T2DM- associated complications, 

damage to the central and peripheral nervous systems is prevalent in 

people with T2DM. This can manifest as diabetic peripheral neuropathy 

(sensory–motor and autonomic) through to cognitive impairment, such 

as that associated with dementia.2 Alzheimer's disease (AD) accounts for 

60–80% of dementia cases.3 Similarly to other insulin- sensitive organs, 

including fat, liver and vascular cells, the central nervous system (CNS) is 

affected by IR, with an increased risk of neuronal degeneration, neuronal 

death, and structural and functional impairment of the brain.4 As a result, 

cognitive disorders such as those that occur in patients with AD occur 

more frequently in people with T2DM.5,6 Traditional cardiometabolic risk 

factors, such as a sedentary lifestyle, central obesity, dyslipidaemia, IR, 

hypertension, diabetes and cardiovascular diseases, are associated with 

progressive cognitive decline and AD.5 According to the Rotterdam Study 

from 1999, people with T2DM have double the risk of developing AD.6

Besides recent interesting discoveries related to the genetic aetiology 

of AD,7 and despite the intensive efforts devoted to AD in the field 

of pharmacotherapy, no disease- modifying treatments have been 

demonstrated to adequately stop the progression of AD.8 Studies have 

shown that aducanumab, an amyloid beta (Aβ)- targeting antibody, which 

was recently approved by the United States Food and Drug Administration 

(FDA), may have the potential to stop disease progression.9–11 However, 

its ability to modify the outcome of the disease has been disputed.12 

The decision made by the FDA was based on double- blind, randomized 

trials that showed a significant dose- and time- dependent reduction in 
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Aβ deposition in participants receiving the active drug.13 The treatment 

was associated with a 22% reduction in cognitive and functional decline. 

Gantenerumab, another anti- Aβ human immunoglobulin G1 (IgG1) 

monoclonal antibody, was not as successful. Recently, two clinical trials 

of gantenerumab showed no significant benefit in patients with early 

AD ( ClinicalTrials. gov identifiers: NCT03444870; NCT03443973).14–16 This 

contrasts with more recent data about lecanemab (Leqembi™; Eisai Co, 

Ltd., Bunkyo City, Tokyo, Japan), a humanized IgG1 monoclonal antibody, 

which showed a 27% reduction in cognitive decline compared with 

placebo, and a decrease in Aβ levels in adults with AD in the phase III 

Clarity AD trial ( ClinicalTrials. gov identifier: NCT03887455).17 Notably, 

adverse events were more frequently reported in people receiving active 

treatments, including Aβ-related oedema and effusions, with at least two 

deaths related to these adverse events.18 Consequently, the widespread 

use of this drug may be questionable. The FDA approved the drug in 

early 2023.19 Approval from the European Medicines Agency followed 

soon after.20

One reason for the poor response of anti- Aβ treatments in AD is the 

therapeutic target, and especially the accumulation of the missing tau 

protein, a key protein for neuronal microtubule stabilization and full 

synaptic activity. Only treatments targeting the double neuropathological 

process (Aβ deposits and tau accumulation) would be able to limit the 

progression of the disease. Thus, despite the undeniable efforts and 

hopes associated with the latest discoveries in the field, the urgency 

of bringing effective treatments to the market with a real and definitive 

impact on AD remains paramount. It turns out that certain treatments 

for T2DM could fill the void by slowing down the neurodegenerative 

processes associated with diabetes. The aim of this review is to highlight 

these treatments.

Alzheimer's disease and type 2 diabetes: a parallel 
epidemiologic rise
According to the Global Burden of Diseases, Injuries, and Risk Factors 

Study in 2019, the absolute number of individuals with dementia is 

estimated to increase from 57.4 million cases worldwide in 2019 to 152.8 

million cases in 2050.21 This will mainly be due to population growth 

and population ageing. When age- standardized dementia prevalence is 

considered, changes in the number of people affected are associated 

with the increasing prevalence of risk factors, including body mass index 

(BMI), fasting plasma glucose and smoking.21 This is fortunately offset by 

increases in the average level of education. Therefore, the overall age- 

standardized prevalence in both sexes will remain fairly stable between 

2019 and 2050. There is geographical heterogeneity in the projected 

increases in AD across countries and regions, with population growth 

contributing the most to increases in sub- Saharan Africa, and population 

ageing contributing the most to changes in East Asia.21

As emphasized in the 2020 report of the Lancet commission, 

interventions on modifiable risk factors will be a means of coping with 

the expected increase in the number of individuals with dementia.22 

Dysregulated glycaemic control is an important risk factor to consider; 

indeed, evidence suggests that people with T2DM are at a higher risk of 

developing dementia.23–26

According to the latest release from the International Diabetes Federation 

(IDF), “diabetes is a pandemic of unprecedented magnitude”, with 537 

million adults living with diabetes worldwide in 2021, which represents 

a 16% increase from the previous IDF estimate in 2019.27 Even more 

worrying are the IDF projections of diabetes prevalence, which predict 

that 783 million adults will be living with diabetes by 2045.27 This will 

represent an increase of 46%, which is more than double the estimated 

population growth (20%) over the same period.27

A growing body of evidence indicates that diabetes increases the risk 

of dementia by a factor of at least two.24–26 A recent study showed 

that the earlier diabetes develops, the greater the risk of developing 

dementia.23 Cognitive dysfunction can occur in the early stages of 

diabetes, known as prediabetes.28 However, the more the parameters 

(blood pressure, lipid disorders, waist circumference) of the metabolic 

syndrome are aggregated, the more the cognitive disorders worsen.5 

Another study, which used 12- year follow- up data from a population- 

based study of Swedish older adults, showed that poorly controlled 

diabetes (glycated haemoglobin ≥7.5%) is associated with accelerated 

cognitive deterioration (incident cognitive impairment without dementia 

and its worsening to dementia).29 The association between diabetes and 

cognitive impairment was stronger when more advanced and severe 

diabetes was considered (for example, in association with heart disease), 

suggesting that the worse diabetes is, the greater the risks for advanced 

brain damage.29

In addition to being strongly linked from an epidemiological point of view, 

these two closely related diseases raise major public health concerns 

because of the high social and economic burdens they pose on both an 

individual and a societal level.24,30

Alzheimer's disease and type 2 diabetes: many 
pathophysiological crosstalks
The pathophysiological mechanisms underlying structural and functional 

brain damage in individuals with diabetes are multiple and complex.31 

Strokes, which are part of the many cardiovascular complications 

associated with diabetes, increase the risk of dementia.32 However, they 

cannot fully explain the association between AD and diabetes, as this 

cannot be reduced to strokes or hypoglycaemia, and do not seem to 

provide the most satisfying answer. An alternative explanation could also 

be that tight glycaemic control with an increased rate of hypoglycaemia 

leads to brain damage, memory loss and dementia.33 However, this 

explanation is also incomplete.

Rather, accumulated evidence over the last 10–15 years suggests that 

diabetes- induced metabolic disturbances in the brain could alone cause 

AD.31,34,35 AD and T2DM are so close from a pathophysiological point of 

view that the term 'type 3 diabetes' has even been proposed to describe 

AD resulting from IR in the brain in order to highlight the strong links 

between both diseases.34,36

Brain glucose metabolism
Normal glucose metabolism in the brain is essential for preserving 

neuronal plasticity and neurotrophic and neuroendocrine functions. 

The brains of people with AD are characterized by decreased cerebral 

glucose uptake.37,38 They produce less energy as provided by glucose 

and use this energy less efficiently. The body’s main source of energy is 

glucose; 25% of daily glucose intake is used by the brain, even though 

this organ represents less than 2% of an individual's total bodyweight.39 

An uninterrupted supply of glucose is, therefore, essential for normal 

brain function. Glucose transport across the blood–brain barrier (BBB) is 

tightly regulated by the glucose transporters (GLUTs) GLUT1 and GLUT3.39 

In addition, GLUT2 and GLUT4 are present in glial cells, and GLUT4 and 

GLUT8 are present in neurons.38 Along with insulin, the different GLUTs 

are, therefore, key in the energy environment required for neurons to 

function normally.38 In this context, the role of glial cells is extremely 

important (Figure  1). They sequentially convert glucose into pyruvate 
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during glycolysis and then pyruvate into lactate (the fuel of choice in 

neurons) through a lactate dehydrogenase- mediated process.40,41 

Lactate is then taken up into neurons through monocarboxylate 

transporters, where it is oxidized into pyruvate, which then feeds the 

tricarboxylic acid cycle to yield adenosine triphosphate (ATP) after 

oxidative phosphorylation of reduced coenzymes. On the other hand, 

neurons can capture glucose directly, which feeds the production of ATP 

through the glycolytic process and the Krebs cycle.40,41 To keep normal 

cognitive functions, the brain’s energetic production must remain optimal 

and relies on intact insulin signalling in both neurons and glial cells.42 Any 

failure translates inexorably into a loss of cognitive function.

Insulin-induced neuroprotective actions
When searching for the common pathophysiological link between 

AD and T2DM, it is revealed that insulin plays a decisive role. After 

crossing the BBB via a saturable and thermo- sensitive carrier- mediated 

active process, insulin binds to its receptor, which triggers an intrinsic 

tyrosine kinase activity.43 The binding of insulin to its receptor induces 

conformational changes and autophosphorylation of the receptor. This 

leads to the recruitment and phosphorylation of the insulin receptor 

substrates IRS- 1 and IRS- 2 in the neuronal membrane.44,45 As a result, 

the phosphatidylinositol 3- kinase (PI3K)/protein kinase B (Akt) signalling 

pathway and the extracellular signal- regulated kinase- 1/2 mitogen- 

activated kinase (MAPK) pathway (involved in improved synaptic plasticity 

and in the regulation of neuroinflammation) are activated. On one hand, 

Akt inactivates glycogen synthase kinase 3β and forkhead box O; on the 

other hand, it activates the mammalian target of rapamycin (mTOR), B 

cell lymphoma 2 (Bcl- 2) and B cell lymphoma extra- large (Bcl- XL) through 

cyclic adenosine monophosphate (cAMP) response element- binding 

protein (Figure 2). As a result, insulin exerts beneficial effects in the brain 

as it positively regulates inflammation- driven processes, endoplasmic 

reticulum (ER) stress, mitochondrial dysfunction, and apoptosis and 

promotes mechanisms involved in cell growth and differentiation, 

and increased synaptic strength, neuronal survival, memory abilities, 

and learning.31,34,35,45 Therefore, when it acts correctly, insulin exerts 

many benefits in the brain, from long- term neuroprotective and 

neuromodulatory effects to anorectic activities in the hypothalamus.46

Brain insulin resistance and neuronal degeneration
T2DM is characterized by a progressive blunting of insulin sensitivity in 

the long term that affects the brain, as well as the well- known insulin- 

sensitive organs (e.g. fat cells, hepatocytes, skeletal muscle cells).47,48 

T2DM increases the risk of developing AD because of brain IR. While IR 

leads to elevated plasma glucose levels in the periphery, it is responsible 

for the formation of senile plaques and intracellular neurofibrillary 

tangles (NTs) in the brain.49 Overall, insulin plays an important role in 

regulating both tau protein, and Aβ deposits in neurons. IR is, for instance, 

responsible for the hyperphosphorylation of tau, whose abnormal 

morphological signature is the formation of NTs, which causes axonal 

transport deficit, neuronal degeneration and neuronal death.44 Toxic NTs 

are known to be associated with decreased expression of GLUT- 1 and 

GLUT- 3 in various areas of the brain and mitochondrial dysfunction with 

increased production of reactive oxygen species.38,50 IR also promotes 

ER stress, which in turn favours tau hyperphosphorylation and IR (in 

a vicious cycle).51 In addition to NTs in neuronal microtubules, senile 

plaques, which are composed of extracellular Aβ deposits, are another 

morphologic hallmark of AD.52 Insulin regulates the balance between Aβ 

anabolism and catabolism. The disruption of normal glucose metabolism 

promotes Aβ aggregation, which, in turn, worsens the neuronal IR in a 

vicious cycle.48 The number of dysfunctional neurons slowly increases, 

Figure 1: Mechanisms of brain glucose metabolism

Glucose is transported from blood vessels to astrocytes through endothelial cells. Astrocytes are specialized in glucose uptake. Glucose transporters (GLUTs) are present in 
the membrane of glial cells, as well as in neurons. As soon as glucose is transported into astrocytes via GLUT1, it is transformed into lactate through glycolysis. Lactate is then 
transported outside the astrocyte and taken up by neurons through monocarboxylate transporters. Intracellular lactate is oxidized to pyruvate through lactate dehydrogenase 
1 (LDH1) and is metabolized along the oxygen pathway. Glucose may also be transported directly into neurons via GLUT3. Glucose then enters the glycolytic pathway and the 
tricarboxylic acid pathway for its later oxidation and the production of energy.
ADP = denosine diphosphate; ATP = adenosine triphosphate; GLUT = glucose transporter; LDH1 = lactate dehydrogenase 1; MCT = monocarboxylate transporter; NAD+ = oxidized 
nicotinamide adenine dinucleotide; NADH = reduced nicotinamide adenine dinucleotide.
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both due to intracellular protein aggregates and the accumulation of 

senile plaques with undigested Aβ peptides. In a vicious cycle, these 

anomalies could also be upstream mechanisms of mitochondrial 

dysfunction with increased reactive oxygen species production, as 

well as dysfunction of mitophagy and autophagy. These processes 

are determinant as they contribute to further neuronal degradation 

and irreversible progression of AD in T2DM.31,34,35,47–49 In addition, the 

synaptic transmissions are impaired due to the decrease in production 

of acetylcholine, the main neurotransmitter in memory processes 

(cognition), due to the lack of metabolites produced in the glycolytic 

pathway (coenzyme A and succinyl coenzyme A) (Figure  3).46,53,54 

Diabetes- induced micro- and macrovascular changes, disruption of 

the BBB, and increased local inflammation should also be considered 

in this complex pathophysiological interplay.34,35,55 Thus, together with 

Aβ deposition, the local microinflammation derived from microglia 

activation is responsible for defective neurogenesis and reduced 

neuronal survival, for instance, in defective hippocampal- dependent 

memory.56,57

Although dominant for over three decades, the hypothesis that Aβ 

cascade is directly responsible for AD is being challenged strongly.58 

Aside from fraudulent research, as recently revealed in Science,59 it is 

also known that many people with no clinical manifestations of dementia 

actually have neuropathological hallmarks of AD.58 Moreover, from the 

analysis of 14 anti- Aβ drug clinical trials, targeting Aβ and tau does not 

appear to improve cognitive functions in people with AD.60

Given the intimate pathophysiological links between AD and T2DM, 

there is growing interest in using drugs that have a positive impact on 

cardiorenal complications for more neurological purposes.61

Antidiabetic drugs in Alzheimer's disease: two 
diseases but one therapeutic target
Lifestyle intervention
Upstream of drug intervention, non- pharmacological and lifestyle 

interventions for individuals with AD include the following:

• education

• social engagement

• cognitive stimulation

• smoking cessation

• exercise

• management of depression and psychological stress

• management of cerebrovascular disease

• management of hypertension

• management of dyslipidaemia

• management of T2DM

• management of obesity

• a healthy diet.

Beyond improving metabolic control, these interventions can have 

positive effects in terms of quality of life, cognitive decline and incidence 

of AD, as has recently been reported.62–64 Lifestyle interventions should, 

therefore, always be recommended for all patients with T2DM and/or AD, 

as they produce beneficial effects on IR and have positive impacts on 

various biological markers of AD.65

Among the various therapeutic tools available for the treatment of 

diabetes, insulin itself might appear, at first glance, to be a valid option. 

It is true that the systemic administration of insulin sometimes improves 

cognitive functions.66 However, given the narrow therapeutic threshold 

Figure 2: Mechanisms of insulin- induced neuroprotective actions

Insulin- induced phosphorylation of insulin receptor substrate activates phosphoinositide- 3 kinase (PI3K)/protein kinase B (Akt) and mitogen- activated kinase (MAPK) pathways. PI3K/
Akt pathway then inactivates glycogen synthase kinase 3β and forkhead box O and activates mammalian target of rapamycin. Altogether, insulin sensitive- dependent intracellular 
pathways regulate many mechanisms involved in cell survival, proliferation, apoptosis, protein synthesis, inflammation, endoplasmic reticulum stress, autophagy and mitochondrial 
function. Through cyclic adenosine monophosphate response element- binding protein, Akt also stimulates B cell lymphoma 2, B cell lymphoma extra- large and B cell lymphoma 
2 antagonist of death, which regulates learning, memory and neuron survival. MAPK influences mechanisms involved in cell proliferation, differentiation, apoptosis or survival, and 
neuroinflammation.
Akt = protein kinase B; BAD = Bcl- 2 antagonist of death; Bcl- 2 = B cell lymphoma 2; Bcl- XL = B cell lymphoma extra- large; CREB = cyclic adenosine monophosphate response 
element- binding protein; ER = endoplasmic reticulum; FoxO = forkhead box O; GSK- 3β = glycogen synthase kinase 3β; IRS = insulin receptor substrate; MAPK = mitogen- activated 
kinase; mTOR = mammalian target of rapamycin; PI3K = phosphoinositide- 3 kinase.
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of the treatment, the inherent hypoglycaemic risk and the consequences 

in terms of the resulting cognitive dysfunction, insulin should always be 

used cautiously in this indication.67,68 There have also been clinical trials 

with intranasal insulin that have shown inconsistent results in improving 

cognitive functions.69–71

Pharmacological intervention
Evidence regarding the positive effects of metformin on cognitive 

impairment is lacking. Although studies in rodents suggest that 

metformin may improve cognitive functions, a study on the risk of AD 

in humans showed that metformin treatment is instead associated 

with poorer cognitive performances.72,73 In contrast, a meta- analysis by 

Campbell et al. showed that metformin users have a lower risk of AD,74 

while another by Tabatabaei Malazy et al. showed that metformin does 

not significantly improve cognitive functions.75 Regarding AD, the place of 

metformin, therefore, remains controversial.

The evidence regarding sulphonylureas is clearer: they are associated 

with worsening cognitive deficits. Recent data by Tang et al. from 

nationwide electronic medical records from the US Veterans Affairs 

Healthcare System showed a 12% increased risk of all- cause 

dementia with sulphonylurea monotherapy compared with metformin 

monotherapy.76 The hazard ratio (HR) for all- cause dementia for 

sulphonylurea monotherapy was even higher in people with a high BMI 

(HR 1.15, 95% confidence interval [CI] 1.10–1.21 for individuals with BMI 

>25 kg/m2 versus HR 1.02, 95% CI 0.93–1.12 for individuals with BMI <25

kg/m2 [2- year exposure]; p<0.01).76

In contrast, several studies have reported improved cognitive function 

in people treated with thiazolidinediones (TZDs). The large real- world 

study by Tang et al. further reinforced the idea that TZDs protect 

against dementia.76 TZDs were associated with a lower risk of AD (HR 

0.89; 95% CI 0.86–0.93) compared with metformin monotherapy.76 

In combination with metformin, TZDs further reduced the risk of all- 

cause dementia, particularly in younger people (below 75 years) and 

in those with a BMI greater than 25 kg/m2.76 Positive effects are likely 

restricted to pioglitazone, which has good BBB penetration, in contrast 

with rosiglitazone, which has poor BBB penetration.77 A recent phase 

III randomized controlled trial (the TOMMORROW trial;  ClinicalTrials. 

gov identifier: NCT01931566), however, failed to show the efficacy of 

pioglitazone (versus placebo) in delaying the onset of mild cognitive 

impairment in a population of at- risk participants without diabetes over 

a period of 5 years.78 Ten years earlier, a randomized pilot clinical study 

also failed to show positive improvement in cognitive function in people 

with AD who did not have diabetes, who were treated with pioglitazone 

for 18 months.79

Sodium- glucose co- transporter 2 (SGLT2) inhibitors are now widely used 

for treating T2DM, especially in people with cardiorenal complications.80 

Their use is associated with reduced risk of dementia in people with T2DM; 

data from the recent nested case- control study by Wium- Andersen et 

al. indicate that this class of drug actually has neuroprotective effects.81 

The study enrolled 176,250 people with T2DM registered in the Danish 

National Diabetes Register. Using risk- set sampling, each dementia 

case (n=11,619) was matched on follow- up time and calendar year of 

dementia, with four controls randomly selected among cohort members 

without dementia (n=46,476). Antidiabetic medications were categorized 

into the following types: insulin, metformin, sulphonylureas and glinides 

combined, TZDs, dipeptidyl peptidase- 4 (DPP- 4) inhibitors, glucagon- like 

peptide 1 (GLP- 1) receptor agonists (RAs), SGLT2 inhibitors, and acarbose. 

Figure 3: Interplay between brain insulin resistance and neurodegradation

In the case of insulin resistance, glycogen synthase kinase 3β is permanently dephosphorylated and therefore activated, thereby hyperphosphorylating tau, which contributes 
to the formation of neurofibrillary tangles and neuronal death. Mechanisms linked to beta- amyloid deposits are also upregulated, leading to synaptic alterations. The resulting 
neuroinflammation, in turn, aggravates insulin resistance in a vicious circle. In addition, the neuronal degeneration that affects the hypothalamus fuels impaired regulation of 
peripheral metabolism, with insulin resistance affecting insulin- sensitive organs such as adipocytes and skeletal muscle cells while impairing insulin secretion by pancreatic beta 
cells and the distribution of the peripheral fat.53

Aβ = beta- amyloid; Akt = protein kinase B; ER = endoplasmic reticulum; GSK- 3β = glycogen synthase kinase 3β; HGP = hepatic glucose production; NT = neurofibrillary tangle; OS = 
oxidative stress; PI3K = phosphoinositide- 3 kinase.
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Use of metformin, DPP- 4 inhibitors, GLP- 1 RAs and SGLT2 inhibitors 

were associated with lower risk of dementia, with a gradual decrease 

in risk of dementia for each increase in daily defined dose. There were 

no synergistic effects of combined treatments.81 This is in accordance 

with a more recent study, which reported that SGLT2 users have a lower 

incidence of dementia compared with those on DPP- 4 inhibitors.82 It is, 

therefore, likely that SGLT2 inhibitors may find some room in maintaining 

cognitive functions in people with T2DM.61 A double- blind, randomized 

placebo- controlled, parallel- group, 12- week study of the effects of 

dapagliflozin in people with AD is underway ( ClinicalTrials. gov identifier: 

NCT03801642).83

A recent study by Akimoto et al. used a using a model of logistic 

regression to show that rosiglitazone, exenatide, liraglutide, dulaglutide 

and sitagliptin have a significantly lower associated risk of AD than 

metformin.84 Among these different drugs, GLP- 1 RAs appear to have the 

largest potential to improve cognitive performance.

Glucagon-like peptide 1 receptor agonists: a place 
in the treatment of Alzheimer's disease?
Glucagon-like peptide 1 receptor agonists: what are 
they?
GLP- 1 (7- 36) amide is an incretin hormone (a 30- amino acid peptide 

hormone) that is continuously released by enteroendocrine L cells in the 

small intestine but is released in greater amounts in response to food 

intake.85 Its main physiological actions include the ability to enhance 

glucose- dependent insulin secretion (the incretin effect), suppress 

postprandial glucagon secretion, slow gastric emptying and induce 

satiety through hypothalamic stimulation. Native human GLP- 1 exhibits 

a short half- life of less than 2 minutes due to the rapid cleavage by an 

ubiquitous aminopeptidase, DPP- 4, and renal clearance. Long- acting 

proteolysis- resistant GLP- 1 RAs have, therefore, been engineered for 

treating T2DM and obesity.86 The first GLP- 1 RA was approved in 2005 

for the treatment of T2DM.87 Since then, different GLP- 1 RAs, classified 

on their molecular backbone derived either from native human GLP- 1 

or from exendin- 4 (a salivary gland hormone from the Gila monster 

lizard, Heloderma suspectum) have been developed. The human GLP- 1 

analogues include the following:

• liraglutide, which has 97% sequence homology to human GLP- 1, with

two amino substitutions and a fatty- acid side chain that enables

albumin binding (once daily, with a half- life of 13 hours);

• semaglutide, which has 94% sequence homology to human GLP- 1, 

with the addition of a fatty diacid chain and a spacer and two amino

acid substitutions (once weekly, with a half- life of 165–185 hours); 

and

• dulaglutide, which contains two chains of human GLP- 1 covalently

linked to Fc fragment of human IgG4, bound via a small peptide

linker (once weekly, with a half- life of 90 hours).

The exendin- 4 analogues include the following:

• exenatide, which has 53% sequence homology to human GLP- 1

(twice daily, half- life of 2.4 hours); and

• lixisenatide, which has 50% sequence homology to human GLP- 1

(once daily, with a half- life of 3 hours).

In addition, a novel GLP- 1/glucose- dependent insulinotropic polypeptide 

co- agonist has been developed for the treatment of T2DM and obesity.86

Beyond providing effective glycaemic control, along with weight 

reduction and lower risk of hypoglycaemia, GLP- 1 RAs have been shown 

to have safety and tolerability profiles that confer long- term beneficial 

effects on cardiovascular outcomes in people with T2DM.85,88 GLP- 1 RAs 

occupy a prominent place in the 2023 therapeutic recommendations by 

the American Diabetes Association and the European Association for the 

Study of Diabetes.85,88

The latest generation of GLP- 1 RAs, such as semaglutide, reduce energy 

intake by decreasing appetite and increasing satiety through the direct 

activation of the hypothalamus and hindbrain and the indirect activation 

via the vagus nerve.89 However, beyond these now well- accepted positive 

metabolic effects, GLP- 1 RAs are also known to improve cognition.90–92 

The role played by GLP- 1 as a neurotransmitter was already reported 

in 1996.93 This class of drugs has shown neuroprotective effects in 

preclinical studies as they improve memory and learning and prevent Aβ 

depositions and the formation of NTs.90–92,94

Glucagon-like peptide 1 receptor agonists: how can 
they be neuroprotective?
The mechanism by which GLP- 1 RAs exert neuroprotective effects 

is complex. Once cleaved from its (pre)proglucagon, GLP- 1 acts on its 

receptors (GLP- 1 receptor, a 7- transmembrane class B1 G- coupled 

receptor family). Besides peripheral tissues, including the gut, stomach, 

pancreas, kidneys, heart, adipose cells, bones and blood vessels, GLP- 1 

receptors are also expressed in the CNS, along with the GLP- 1 ligand.86 

Thus, preproglucagon- expressing neurons are found in the nucleus 

tractus solitarii of the brainstem and send projections to the arcuate 

and paraventricular nuclei of the hypothalamus.91 These neurons in the 

nucleus tractus solitarii are directly activated by afferent vagal inputs to 

relay satiety signals from the periphery to the brain. However, there are 

many other cerebral regions (cortex, hippocampus, striatum, substantia 

nigra) where preproglucagon- producing cells are expressed.86,91 GLP- 1 

RAs have a widespread distribution in the CNS, from the occipital and 

frontal lobes to the hypothalamus and thalamus, the caudate putamen, 

globus pallidus and hippocampus.86,91,95 In the case of T2DM and obesity- 

related IR, impaired GLP- 1 secretion contributes to neuronal degeneration 

and cognitive decline, whereas the administration of exogenous GLP- 1 

RAs reverses these pathogenic changes.90 To act in the brain, GLP- 1 and 

GLP- 1 RAs cross the BBB by simple diffusion.91,96 This process has been 

shown, at varying rates, with exendin- 4 (the bioactive peptide derived 

from H. suspectum venom) and exenatide (the pharmacologic mimetic), 

which exhibit a good penetration rate, followed by lixisenatide and 

finally, the lipidated peptides, liraglutide and semaglutide.90,91 They reach 

various areas in the CNS where they exert anorectic effects, in addition 

to acting as anti- inflammatory and neuroprotective agents.

As soon as GLP- 1 binds to its receptor, intracellular adenylyl cyclase 

is activated; this, in turn, increases cAMP levels. Protein kinase A/

PI3K pathways are then activated. As downstream intracellular 

pathways common to insulin, including MAPK, are activated by GLP- 1, 

it is now thought that GLP- 1 RAs actually restore insulin- dependent 

intracellular altered pathways through activated overlapping pathways 

(Figure  4).86,90–92,94 As GLP- 1 also prevents the loss of insulin brain 

receptors, which is a common feature of AD, it definitively acts as a 

neuroprotective agent.97 This neuroprotective effect was reported 

for the first time more than 20 years ago, and the physiological role of 

GLP- 1 in cognition was reported in the following years.98,99 For instance, 

GLP- 1 receptor- deficient mice that have a phenotype characterized by a 

learning deficit had this deficit restored after hippocampal GLP1R gene 

transfer.99
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GLP- 1 RAs act on many other intracellular pathways involved in 

neuroinflammation and neuronal degeneration. They restore altered 

mitochondrial dysfunction, such as in the hippocampus. They also 

contribute to the decrease of Aβ deposits and tau hyperphosphorylation, 

and they restore synaptic losses.86,90–92,94 The method of action of 

GLP- 1 RAs is, therefore, complex and involves direct mechanisms, 

including improved mitochondrial function, reduced ER stress and 

neuroinflammation, and indirect mechanisms including reduced blood 

glucose levels and, more importantly, improved IR.

Evidence from animal experiments
Several animal studies has shown that liraglutide decreases Aβ and 

NT depositions, and has a positive influence on cognitive function. In a 

transgenic mutant tau (hTauP301L) mouse tauopathy model, liraglutide 

was shown to reduce neuronal phospho- tau load significantly 

compared with the vehicle- dosed controls.100 In this model, liraglutide 

treatment significantly reduced the clasping rate (a measure of hind 

limb motor impairment) and fully prevented clasping- associated 

lethality.100 In addition, liraglutide improved memory function 

in a model of senescence- accelerated mouse- prone 8 (SAMP8) 

mice, which naturally occurrs in mice that displays a phenotype of 

accelerated ageing.101 In this model, liraglutide delayed the age- 

associated progressive decline in spatial memory function associated 

with hippocampal neuronal loss. Compared with age- matched vehicle- 

dosed SAMP8 mice, liraglutide also significantly increased the number 

and the density of cornu ammonis 1 (CA1; Latin for 'horn shaped)' 

pyramidal neurons, which appear to be critical for object differentiation 

in long- term memory. Hippocampal neurons are, therefore, preserved 

in these mice with AD treated with liraglutide.101 Other preclinical 

studies showed that liraglutide prevents key neurodegenerative 

developments found in AD.90,92

Evidence from clinical trials
In a pilot study where liraglutide was administered in people with long- 

standing AD (n=18), no difference in terms of cognition or Aβ deposition 

was found compared with those on placebo (n=20) after 26 weeks.102 

The individuals in this clinical assay were not diabetic. Notably, 26 weeks 

of liraglutide treatment prevented the expected decline in the cerebral 

metabolic rate of glucose (measured by [18F]fluorodeoxyglucose- positron 

emission tomography, a tracer of brain metabolic changes), which reflects 

disease progression. This finding may be associated with improved BBB 

glucose transport in people treated with liraglutide.102 More recently, a 

randomized controlled clinical study carried out in a group of people 

with obesity, prediabetes or early T2DM (n=20 in each arm) showed that, 

after comparable weight loss and superimposable glycaemic control and 

insulin sensitivity, liraglutide (1.8 mg daily administered subcutaneously) 

significantly improved short- term memory (mean Digit Span z- score: 

from -0.06 to 0.80; p=0.024) and memory composite z- score (mean 

memory z- score: 0.67 to 0.032; p=0.0065).103 Data from pooled double- 

blind, randomized controlled trials (15,820 patients) indicated that people 

treated with a GLP- 1 RA had a lower rate of dementia than people on 

placebo (HR 0.47, 95% CI 0.25–0.86).104 These data are in accordance 

with a post hoc analysis of the cardiovascular outcome REWIND trial ( 

ClinicalTrials. gov identifier: NCT01394952), which showed that dulaglutide 

reduces cognitive impairment by 14% in people with T2DM aged 50 

years or above who had additional cardiovascular risk factors; these 

results were seen during a median follow- up of 5.4 years.105 Data from a 

nationwide Danish registry- based cohort (120,054 patients) also showed 

that dementia rate was lower in those treated with GLP- 1 RAs compared 

with placebo (HR 0.89, 95% CI 0.86–0.93), with yearly increased exposure 

to GLP- 1 RAs.104 A placebo- controlled, double- blind, phase II clinical 

trial (the ELAD trial;  ClinicalTrials. gov identifier: NCT01843075) testing 

liraglutide in over 200 patients with mild cognitive impairments/AD for 

Figure 4: The overlapping glucagon- like peptide 1 signalling and insulin signalling pathways in neurons

The activation of glucagon- like peptide 1 (GLP- 1) receptors activates protein kinase A (PKA) through adenosine cyclase and increased intracellular cyclic adenosine monophosphate 
levels. The downstream common pathways with insulin are phosphoinositide- 3 kinase (PI3K) and mitogen- activated kinase pathways. The activation of GLP- 1 receptors, therefore, 
increases insulin sensitivity and compensates for impaired insulin signalling. Tau hyperphosphorylation is reduced along with neurofibrillary tangle and beta- amyloid deposits.
AKT = protein kinase B; BAD = BCL- 2 antagonist of death; BCL- 2 = B cell lymphoma 2; Bcl- XL = B cell lymphoma extra- large; cAMP = cyclic adenosine monophosphate; CREB = cyclic 
adenosine monophosphate response element- binding protein; ER = endoplasmic reticulum; FoxO = forkhead box O; GLP- 1 RAs = glucagon- like peptide 1 receptor agonists; GSK- 3β 
= glycogen synthase kinase 3β; IRS = insulin receptor substrate; MAPK = mitogen- activated kinase; mTOR = mammalian target of rapamycin; PI3K = phosphoinositide- 3 kinase; PKA = 
protein kinase A.
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1 year showed that neuronal loss was reduced by the drug.106,107 Two 

phase III clinical trials testing semaglutide in patients with AD are currently 

on- going: the EVOKE trial ( ClinicalTrials. gov identifier: NCT04777396)108 

and the EVOKE Plus trial ( ClinicalTrials. gov identifier: NCT04777409).109 

These two trials will study the efficacy of oral semaglutide (14 mg) in 

patients with early AD. Change in clinical dementia rating, time taken to 

reach dementia and change in the AD Composite Score are some of the 

important outcomes that will be assessed from these trials.108–110

Conclusions
Currently, GLP- 1 RAs belong to a class of drugs that are used extensively 

for treating T2DM. Their place in the treatment of T2DM has been further 

reinforced in the latest version of the treatment guidelines published 

jointly by the American Diabetes Association and the European 

Association for the Study of Diabetes.85,88 In addition to T2DM, GLP- 1 

RAs have been emerging as a potential treatment for AD for well over 

a decade.35 Both diseases, whose worldwide prevalence continues to 

rise, are now recognized as having particularly serious consequences 

in socioeconomic terms and severely impact both the quality of life and 

morbi- mortality of people who are affected.21,27 Beyond the usual micro- 

and macrovascular complications associated with T2DM, one must admit 

that the strong relationship between diabetes and neuronal degeneration 

remains somewhat evanescent among diabetologists. According to 

accumulated evidence over the last 10 years, this relationship is, in fact, 

relevant and logical. AD and T2DM share common pathophysiological 

mechanisms, namely IR, which led some to claim that AD is a metabolic 

disease caused by IR in the brain, thereby supporting the hypothesis that 

AD should actually be regarded as type 3 diabetes.34,36,111

Early 2023 was marked by the announcement made by the FDA to 

recognize lecanemab as an effective treatment for AD.19 In addition, the 

European Medicines Agency has accepted a marketing authorization 

application for lecanemab.20 There are undeniably great expectations 

from the medical community and health authorities with regard to the 

marketing of innovative molecules. The future in the field also lies in 

the refinement of screening methods. Early diagnosis of AD using the 

biomarker called 'brain- derived tau' (BD- tau) will likely bring additional 

value to this topic.112 The test is presented to be superior to current blood 

diagnostic tests that are usually used to detect AD. It is specific to the 

disease and correlates well with AD neuronal degeneration biomarkers 

in the cerebrospinal fluid. The technique was developed to selectively 

detect BD- tau while avoiding misleading contaminants produced outside 

the brain. BD- tau plasma levels correlate with those in the cerebrospinal 

fluid, as well as with the severity of Aβ plaques and NTs in the brain tissue. 

Early detection of the disease is particularly sought since it would trigger 

the adoption of preventive methods, in particular those associated with 

improved insulin sensitivity at the cerebral level. It is important to keep in 

mind that, although attractive, the hypothesis that GLP- 1 RAs could play a 

role in the treatment of AD remains to be demonstrated and clinical trials 

are still on- going. If these trials could demonstrate the efficacy of GLP- 1 

RAs (as preclinical and phase II studies seem to suggest) as a relevant 

treatment of AD, this would undoubtedly represent a breakthrough and 

an enormous hope, since their use is widespread and well known, in 

particular to diabetologists. q
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