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Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have gained traction for the management of type 2 diabetes and obesity. Unlike 
several classes of antidiabetic medications that contribute to weight gain, GLP-1RAs not only reduce haemoglobin A1c, but also 
promote weight loss. While there is a large body of evidence supporting its safety and efficacy in adults, paediatric clinical trial data 

have only emerged in recent years. This review will discuss the limited treatment options for paediatric type 2 diabetes and the mechanism 
of action of GLP-1RAs as it pertains to physiological pathways relevant for type 2 diabetes, obesity and their related comorbidities. The 
outcomes of paediatric trials evaluating liraglutide, exenatide, semaglutide and dulaglutide in paediatric type 2 diabetes and obesity will be 
closely examined, including differences compared with adult studies. Finally, potential barriers and strategies to expanding GLP-1RA access 
in adolescents will be discussed. Future studies are needed to determine if the cardio- and renal-protective benefits of GLP-1RAs apply to 
youth-onset type 2 diabetes.

The incidence of youth-onset type 2 diabetes (T2D) is increasing.1,2 Growing evidence has 

demonstrated that youth-onset T2D is rapidly progressive, with earlier onset of life-limiting 

complications compared with adult-onset T2D.3,4 Initiation of effective treatment that can 

restore beta cell function is critical. Until 2019, metformin and insulin were the only medications 

approved by the United States Food and Drug Administration (FDA) for the treatment of youth 

with T2D. In 2019, liraglutide became the first glucagon-like peptide-1 receptor agonist (GLP-

1RA) approved for youth with T2D, followed by exenatide in 2021 and dulaglutide in 2022.5–7 

According to the American Diabetes Association and the International Society for Pediatric and 

Adolescent Diabetes’ current clinical practice guidelines for the management of youth-onset 

T2D, metformin monotherapy is the standard initial treatment for youth with T2D, once metabolic 

control is restored with insulin in those who present with ketosis and/or marked hyperglycaemia.8 

However, data collected from the Treatment Options for Type 2 Diabetes in Adolescents and Youth 

(TODAY) study demonstrated early glycaemic failure on metformin monotherapy, with a median 

treatment failure time of 11.5 months.9 Escalation of treatment, including the initiation of insulin, 

is recommended.10

The recommendation to start insulin therapy following metformin failure in youth contrasts 

with the guidelines for adults with T2D.11 In the management guidelines for adults with T2D, 

insulin or sulphonylureas are only added to the regimen if other medications fail to achieve 

the goal haemoglobin A1c (HbA1c) to avoid additional weight gain, which could worsen insulin 

resistance and overall glycaemic control and cardiometabolic health.11,12 Despite multiple new 

pharmacotherapies to treat adult-onset T2D, as of 2023 there remains only five medications that are 

approved by the FDA for the treatment of youth-onset T2D. Accordingly, medications approved for 

adult T2D have been used off-label in this cohort to improve weight and glycaemic outcomes.13,14

Across the lifespan, there is growing interest in utilizing GLP-1RAs in the treatment of T2D, given 

the potential to control hyperglycaemia and promote weight reduction, thus addressing the 

underlying pathophysiology of T2D.15–17 GLP-1RAs stimulate postprandial insulin secretion, reduce 

glucagon secretion, delay gastric emptying and decrease appetite, leading to improvements in 

glycaemic control and weight reduction.17 Given the rapid progression of beta cell failure and 

development of complications, there is considerable interest in treating youth with new oral and 

injectable agents that have been approved for use in adults with T2D.18,19 The objectives of this 

review are to: (1) review the mechanism of action of GLP-1RAs in T2D; (2) summarize the use of 

GLP-1RAs in youth-onset T2D, highlighting recent data on the use of dulaglutide in this age group; 

(3) discuss accessibility of GLP-1RAs in the paediatric population; and (4) conclude by reviewing

the challenges of conducting phase III randomized clinical trials of these medications in the

paediatric population, and discussing a potential pathway to facilitate approval of these drugs for

adolescents with T2D.20
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Glucagon-like peptide-1 mechanism of action
Expression and regulation
Glucagon-like peptide-1 (GLP-1), which is encoded by the preproglucagon 

gene (Gcg), is a pleotropic hormone secreted by the intestinal L cells in 

response to nutrients.21 Proconvertase (PC) cleavage of the proglucagon 

molecule releases multiple peptides, including glucagon (aa 33–61), 

GLP-1 (aa 72–107/108) and GLP-2 (aa 126–158).16 This process occurs in 

a tissue-specific fashion to coordinate the activity of these hormones, 

which may have opposing functions. The expression of PC1 in the 

enteroendocrine L cells and the nucleus tractus solitarii (NTS) directs 

the cleavage of Gcg into GLP-1 (along with other peptides), whereas PC2 

expression in the alpha cells results in the generation of glucagon.

GLP-1 is secreted by the distal ileum and colon and a population of 

neurones in the NTS, in response to nutrient and neural inputs.22 GLP-1 

level is lowest during fasting and rapidly increases after feeding.23 

Luminal exposure of the L cells to nutrients (carbohydrates, amino acids 

and lipids) induces GLP-1 secretion into the intestinal microvasculature 

to exert its humoral effects and stimulate enteric neurones. GLP-1 

secretion is also stimulated by neurotransmitters from vagal and enteric 

neurones.24 In the brain, the NTS neurones are the primary source of 

endogenous GLP-1, whose secretion is stimulated by leptin and gastric 

distension. The downstream signalling through the GLP-1 receptor (GLP-

1R) mediates the biological functions of GLP-1. The pleiotropic functions 

of GLP-1RA are described below (Figure 1).

Rationale for use in type 2 diabetes
GLP-1RAs have become an attractive treatment option in T2D partly due 

to their glucose-dependent incretin effect. Binding of GLP-1 to the GLP-1R 

on the beta cell membrane activates cyclic adenosine monophosphate-

mediated protein kinase A (PKA) signalling, resulting in exocytosis of 

the insulin granules.22 This coordinated process is highly dependent 

on the ambient glucose concentration, which minimizes the risk of 

hypoglycaemia in patients receiving GLP-1RA treatment.22 Conditional 

mouse models that alter tissue-specific expression of GLP-1Rs have 

shown that beta cell GLP-1R expression is required for hyperglycaemia- 

and GLP-1RA-induced insulin secretion.25,26 The importance of GLP-1R 

signalling in human subjects has been validated by the ability of exendin 

9-39, a GLP-1R antagonist, to block GLP-1RA-induced glucose-stimulated 

insulin secretion from human islets, and after a 150 g glucose load in

healthy human volunteers.27 In adults with T2D, liraglutide improves beta

cell function, as evident by the increase in first- and second-phase insulin 

secretion.28

In addition to its incretin effect, GLP-1 also suppresses glucagon 

secretion from alpha cells. GLP-1-mediated inhibition of glucagon 

secretion occurs through three pathways: (1) GLP-1 stimulates the 

secretion of somatostatin, a potent suppressor of glucagon;29 (2) 

inhibition of glucagon secretion can also occur through a PKA-dependent 

pathway;30 and (3) GLP-1-stimulated insulin secretion from beta cells 

indirectly suppresses glucagon secretion from alpha cells. In response 

to glucose loading, individuals with T2D display delayed insulin secretion 

as well as failure of glucagon suppression, contributing to postprandial 

hyperglycaemia.31 GLP-1-mediated suppression of glucagon secretion 

is thus expected to augment its insulinotropic effect in normalizing 

postprandial hyperglycaemia.32

Early rodent studies demonstrating GLP-1RA treatment expansion of 

the beta cell mass generated excitement about its potential to reverse 

T2D in humans.22 Subsequent work showed that GLP-1R-mediated 

stimulation of beta cell proliferation only occurred in young but not 

older rodents.33 In human subjects, while GLP-1RAs may improve 

beta cell function during treatment, there is no clinical evidence of 

sustained improvement after treatment discontinuation in either adults 

or adolescents.34–37

As GLP-1RAs stimulate insulin secretion, the question of its potential to 

promote beta cell exhaustion has also been raised. Prior studies have 

shown that patients treated with sulfonylureas are at increased risk 

for beta cell functional decline.38 In a humanized mouse model using 

transplanted islets, daily injection of high-dose liraglutide for more than 

200 days resulted in beta cell dysfunction.39 To date, there have been no 

clinical studies demonstrating adverse impact of GLP-1RAs on beta cell 

function.

Figure 1: Therapeutic benefits of glucagon-like peptide-1 receptor agonists in obesity, diabetes and diabetes-related 
complications

GLP-1RA = glucagon-like peptide-1 receptor agonist; MACE = major adverse cardiac events.
Dashed arrow indicates indirect effect. Created with BioRender.com.
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Management of obesity
In addition to its insulinotropic actions, GLP-1RAs are also effective 

agents in promoting weight loss. Although distension of the proximal 

gut activates GLP-1R-expressing afferent sensory vagal neurones to 

inhibit gastric emptying and small intestinal motility, this pathway does 

not mediate GLP-1RA-driven weight loss. Downregulation of GLP-1R in 

the nodose ganglion in rodents prevented GLP-1RA-induced inhibition 

of gastric emptying but had no effect on food intake or body weight.21

Several lines of evidence support the brain as the central target of 

GLP-1RA-induced weight loss. Injection of liraglutide or exendin-4 

peripherally, activated multiple nuclei in the hindbrain and hypothalamus 

(periventricular nucleus, area postrema and NTS).40,41 In rats, 

intracerebroventricular injection of the GLP-1R inhibitor, exendin 9-39, 

increased food intake.42–44 Postnatal knockdown of hypothalamic Glp1r 

(the gene encoding GLP-1R) expression increased food intake and 

body weight.22 In addition to its effect on homeostatic feeding, GLP-

1RAs also activate brain areas in the mesolimbic system to suppress 

reward behaviour and palatability.22 The combination of GLP-1 action 

on homeostatic and hedonic feeding likely contributes to its appetite 

suppressant and weight loss effect.

Despite the unequivocal pharmacological effect of GLP-1RAs, the 

mechanism of physiological central nervous system (CNS) GLP-1R 

signalling remains incompletely understood. Although peripherally 

injected GLP-1RAs can cross the blood–brain barrier,22,45,46 it is unclear 

if endogenous GLP-1 activates central GLP-1R signalling. The pattern 

of neuronal activation differed between mice (or rats) that received 

injection of long-acting GLP-1RAs peripherally and intra-portal vein 

injection of native GLP-1.22,47 Given the short half-life of native GLP-1 

(less than 2 minutes), it is questionable whether peripherally or centrally 

derived GLP-1 activates CNS GLP-1R signalling. Finally, as mechanistic 

studies of CNS GLP-1R signalling largely comes from rodent models, the 

physiological importance of CNS GLP-1R signalling in weight control in 

humans remains unknown.

Management of diabetic nephropathy
The TODAY study demonstrated that diabetic nephropathy (DN) occurs 

early in youth-onset T2D, with a baseline prevalence of 8% at study entry 

(mean diabetes duration of 7.8 months) and a cumulative incidence of 

54.8% after a mean diabetes duration of 13.3 years.48 Treatment for DN 

in children consists of glycaemic management, lifestyle modification 

and the use of angiotensin-converting enzyme (ACE) inhibitors.8,49 

Studies of adults with T2D have demonstrated that GLP-1RAs delay the 

progression of diabetic kidney disease.50–52 In vitro and in vivo animal 

models point to two GLP-1RA-mediated pathways. GLP-1RAs may 

promote natriuresis by inhibiting the Na+/H+ exchanger isoform 3 on 

the apical membrane of the proximal tubule.53 GLP-1RAs also inhibit 

angiotensin II (ANG II) action at different levels of the renin–angiotensin 

pathway. GLP-1RAs have been shown to increase ACE2 expression and 

activity, and downregulate the expression of ANG II production.54 It may 

also protect the kidneys by limiting the ANG II-induced tissue fibrosis 

by altering the expression of its receptor subtypes, ANG II receptor 

type 1 and ANG II receptor type 2.55 Finally, GLP-1 may lower ANG 

II-induced oxidative stress in a PKA-dependent pathway.54 Future trials

testing the efficacy of GLP-1RAs on the prevention of DN in youth-onset

T2D is needed to expand management strategies for this vulnerable

population.

Other metabolic effects
Elevated alanine aminotransferase – a marker recommended for 

screening of nonalcoholic fatty liver disease – has been found in 48% of 

patients with paediatric T2D.56,57 GLP-1RAs have been shown to improve 

hepatic steatosis in adults who are overweight or have T2D or polycystic 

ovary syndrome.58–62 GLP-1RA-mediated weight loss may decrease 

lipotoxicity, and enhanced hepatic insulin sensitivity may improve 

hepatic mitochondrial function.62 Additionally, cardiovascular risk 

factors such as hypertension, dyslipidaemia and chronic inflammation 

are common in youth-onset T2D.48 Sixteen per cent of the TODAY 

study participants had abnormal left ventricular structure.63 GLP-1RAs 

appear to exert cardioprotective effects by stabilizing atheroma via 

improvement of endothelial function and reduction of vascular wall 

inflammation.64 Although serious cardiovascular events remain rare in 

young adults with youth-onset T2D, the case rates will likely increase 

as the incidence of T2D continues to rise. Future studies are needed 

to determine if GLP-1RA use will similarly reduce major atherosclerotic 

cardiac events.

Safety and efficacy of glucagon-like peptide-1 
receptor agonists in paediatric type 2 diabetes
Currently, there are three GLP-1RAs approved for the treatment of T2D 

in youth aged 10 years and older, including liraglutide, extended-release 

exenatide and dulaglutide (Table  1). Since the approval of metformin 

in 2000, liraglutide (1.8 mg daily) was the first non-insulin medication 

to receive FDA approval in 2019 for the treatment of T2D in youth. A 

randomized, placebo-controlled trial was conducted in 2014 to assess 

the pharmacokinetics, pharmacodynamics and safety of liraglutide in 

21 youth aged 10–17 years with T2D.65 A dose-dependent improvement 

in HbA1c was observed in this small cohort. Pharmacokinetics and 

side effects were comparable to that observed in adults. Given these 

findings of efficacy, tolerability and safety, a subsequent randomized, 

placebo-controlled study of 135 youth aged 10–16 years with T2D was 

conducted by the Ellipse Trial Investigators in 2019.6 Liraglutide was 

started at 0.6 mg daily and titrated up to 1.8 mg daily for 26 weeks, 

followed by a 26-week open-label extension period. At 26 weeks, there 

was an estimated treatment difference in HbA1c change from baseline 

of -1.06% (p<0.001) favouring the liraglutide group, which increased to 

-1.30% after 52 weeks. HbA1c levels of <7.0% were achieved in 63.7%

of the liraglutide group versus 36.5% of the placebo group (p<0.001),

and the liraglutide group had a decrease in fasting plasma glucose level

at both time points. In contrast, there was an increase in the placebo

group.

Exenatide extended-release was then approved in 2021 for youth with 

T2D aged 10 years and older, which is the first long-acting GLP-1RA 

approved for adolescents, given at a dose of 2.0 mg weekly.5 An initial 

randomized, placebo-controlled, crossover study on the pharmacology 

and tolerability of 2.5 μg and 5 μg exenatide pre-prandial injections 

in 13 adolescents with T2D demonstrated a significant reduction in 

postprandial blood glucose level and glucagon secretion.66 Subsequently, 

83 adolescents aged 10–17 years were randomized to receive exenatide 

2 mg weekly for 24 weeks, followed by a 28-week open-label period.5 

At 24 weeks there was a significant between-group difference in HbA1c 

change of -0.85%, favouring the treatment group. Mean difference in 

fasting glucose, systolic blood pressure and triglyceride levels also 

favoured the treatment group, although it did not reach significance. 

Adverse events occurred in 61.0% of the treatment group compared 

with 73.9% of the placebo group, and no major hypoglycaemic events 

occurred in either group.



42

Glucagon-like Peptide-1 Receptor Agonists for the Treatment of Type 2 Diabetes in Youth

touchREVIEWS in Endocrinology

Ta
bl

e 
2:

 S
um

m
ar

y 
of

 p
ae

di
at

ri
c 

cl
in

ic
al

 t
ri

al
 r

es
ul

ts
 o

f g
lu

ca
go

n-
lik

e 
pe

pt
id

e-
1 

re
ce

pt
or

 a
go

ni
st

 u
se

 in
 p

ae
di

at
ri

c 
ob

es
ity

S
tu

d
y

D
es

ig
n

S
am

p
le

 
si

ze
A

ge
 in

 
ye

ar
s

M
ai

n
 in

cl
u

si
o

n
 

cr
it

er
ia

D
o

se
D

u
ra

ti
o

n
Ef

fi
ca

cy
S

af
et

y

Li
ra

gl
u

ti
d

e

Ke
lly

 e
t a

l. 
(2

02
0)

68
RC

T
25

1
12

–1
7

B
M

I ≥
95

th
 p

er
ce

nt
ile

, d
id

 
no

t e
xc

lu
de

 if
 T

2D
3.

0 
m

g 
da

ily
56

 w
ee

ks
 +

 2
6 

w
ee

ks
 fo

llo
w

 u
p

zB
M

I c
ha

ng
e 

(S
D

):
ET

D
 o

f -
0.

22
, f

av
ou

rin
g 

in
te

rv
en

tio
n 

(p
=

0.
00

2)
Re

du
ct

io
n 

in
 B

M
I o

f ≥
5%

:
43

.3
%

 o
f i

nt
er

ve
nt

io
n 

ve
rs

us
 1

8.
7%

 o
f p

la
ce

bo
Re

du
ct

io
n 

in
 B

M
I o

f ≥
10

%
:

26
.1

%
 o

f i
nt

er
ve

nt
io

n 
ve

rs
us

 8
.1

%
 o

f p
la

ce
bo

G
I A

Es
 m

or
e 

fr
eq

ue
nt

 in
 in

te
rv

en
tio

n 
(6

4.
8%

 v
er

su
s 

36
.5

%
)

A
Es

 le
ad

in
g 

to
 d

is
co

nt
in

ua
tio

n 
m

or
e 

fr
eq

ue
nt

 in
 in

te
rv

en
tio

n 
(1

0.
4%

 v
er

su
s 

0.
0%

)
Fe

w
 S

A
Es

 (2
.4

%
 v

er
su

s 
4.

0%
)

B
en

si
gn

or
 e

t a
l. 

(2
02

1)
69

RC
T

13
4

10
–1

6
B

M
I ≥

85
th

 p
er

ce
nt

ile
 

an
d 

T2
D

0.
6 

m
g 

da
ily

1.
2 

m
g 

da
ily

1.
8 

m
g 

da
ily

52
 w

ee
ks

B
M

I c
ha

ng
e:

ET
D

 o
f -

0.
89

 (k
g/

m
2 ), 

fa
vo

ur
in

g 
in

te
rv

en
tio

n 
(p

=
0.

03
6)

%
 c

ha
ng

e 
in

 B
M

I:
ET

D
 o

f -
2.

73
%

, f
av

ou
rin

g 
in

te
rv

en
tio

n 
(p

=
0.

02
8)

%
B

M
Ip

95
 c

ha
ng

e:
ET

D
 o

f -
4.

42
%

, f
av

ou
rin

g 
in

te
rv

en
tio

n 
(p

=
0.

03
8)

Fi
nd

in
gs

 a
re

 s
ig

ni
fic

an
t a

t 5
2 

w
ee

ks
, n

ot
 a

t 2
6 

w
ee

ks

N
ot

 e
va

lu
at

ed

Ex
en

at
id

e

Ke
lly

 e
t a

l. 
(2

01
2)

70
Ra

nd
om

iz
ed

, 
op

en
- la

be
l, 

cr
os

so
ve

r

12
9–

16
B

M
I ≥

1.
2 

tim
es

 th
e 

95
th

%
, o

r 
B

M
I ≥

35
 k

g/
m

2
10

 μ
g 

tw
ic

e 
da

ily
D

E:
 5

 μ
g 

tw
ic

e 
da

ily
, 

10
 μ

g 
tw

ic
e 

da
ily

3 
m

on
th

s
B

M
I c

ha
ng

e:
ET

D
 o

f -
1.

71
 (k

g/
m

2 ), 
fa

vo
ur

in
g 

in
te

rv
en

tio
n 

(p
=

0.
01

)
%

 c
ha

ng
e 

in
 B

M
I:

ET
D

 o
f -

4.
92

%
, f

av
ou

rin
g 

in
te

rv
en

tio
n 

(p
=

0.
00

9)
To

ta
l b

od
y 

w
ei

gh
t c

ha
ng

e:
ET

D
 o

f -
3.

9 
kg

, f
av

ou
rin

g 
in

te
rv

en
tio

n 
(p

=
0.

02
)

In
su

lin
- r

el
at

ed
 fi

nd
in

gs
:

Fa
st

in
g 

in
su

lin
 c

ha
ng

e:
ET

D
 o

f -
7.

5 
m

U
/L

, f
av

ou
rin

g 
in

te
rv

en
tio

n 
(p

=
0.

02
)

In
su

lin
 s

en
si

tiv
ity

:
ET

D
 o

f +
6.

1,
 fa

vo
ur

in
g 

in
te

rv
en

tio
n 

(p
=

0.
02

)
β-

ce
ll 

fu
nc

tio
n:

ET
D

 o
f +

17
.9

7,
 fa

vo
ur

in
g 

in
te

rv
en

tio
n 

(p
=

0.
03

)

M
ild

 n
au

se
a 

in
 3

6%
, v

om
iti

ng
 in

 2
7%

, h
ea

da
ch

e 
in

 2
7%

, 
ab

do
m

in
al

 p
ai

n 
in

 2
7%

, i
nj

ec
tio

n 
si

te
 b

ru
is

in
g 

in
 o

ne
 p

ar
tic

ip
an

t
N

o 
hy

po
gl

yc
ae

m
ia

 o
r 

pa
nc

re
at

iti
s

Fo
x 

et
 a

l. 
(2

02
2)

71
RC

T
10

0
12

–1
8

B
M

I ≥
1.

2 
tim

es
 th

e 
95

th
 

pe
rc

en
til

e
2.

0 
m

g 
ex

te
nd

ed
 

re
le

as
e,

 w
ee

kl
y

52
 w

ee
ks

%
 c

ha
ng

e 
in

 B
M

I:
ET

D
 o

f -
4.

1%
, f

av
ou

rin
g 

in
te

rv
en

tio
n,

 d
id

 n
ot

 r
ea

ch
 

si
gn

ifi
ca

nc
e 

(p
=

0.
07

8)
C

ar
di

om
et

ab
ol

ic
 fi

nd
in

gs
:

TG
/H

D
L 

ra
tio

:
ET

D
 o

f -
0.

61
, f

av
ou

rin
g 

in
te

rv
en

tio
n 

(p
=

0.
05

)

A
E 

fr
eq

ue
nc

y 
si

m
ila

r 
be

tw
ee

n 
gr

ou
ps

 (9
6.

9%
 o

f i
nt

er
ve

nt
io

n 
ve

rs
us

 9
0.

9%
 o

f p
la

ce
bo

)
G

I A
Es

 m
or

e 
co

m
m

on
 in

 in
te

rv
en

tio
n

N
o 

se
rio

us
 a

dv
er

se
 e

ve
nt

 d
ire

ct
ly

 r
el

at
ed

 to
 th

e 
st

ud
y 

dr
ug

S
em

ag
lu

ti
d

e

W
eg

hu
be

r 
et

 
al

. (
20

22
)72

RC
T

20
1

12
–1

7
B

M
I ≥

95
th

 p
er

ce
nt

ile
 o

r 
B

M
I ≥

85
th

 p
er

ce
nt

ile
 

+
 w

ei
gh

t-
re

la
te

d 
co

ex
is

tin
g 

co
nd

iti
on

2.
4 

m
g 

w
ee

kl
y

68
 w

ee
ks

%
 c

ha
ng

e 
in

 B
M

I:
ET

D
 o

f -
16

.7
%

, f
av

ou
rin

g 
in

te
rv

en
tio

n 
gr

ou
p 

(p
=

<
0.

00
1)

W
ei

gh
t l

os
s 

of
 ≥

5%
:

73
%

 o
f i

nt
er

ve
nt

io
n 

ve
rs

us
 1

8%
 o

f p
la

ce
bo

C
ar

di
om

et
ab

ol
ic

 fi
nd

in
gs

:
Im

pr
ov

ed
 w

ai
st

 c
irc

um
fe

re
nc

e,
 H

bA
1c

, l
ip

id
s,

 A
ST

 w
er

e 
gr

ea
te

r 
in

 in
te

rv
en

tio
n

G
I A

Es
 g

re
at

er
 (6

2%
 o

f i
nt

er
ve

nt
io

n 
ve

rs
us

 4
2%

 o
f p

la
ce

bo
)

4%
 w

ith
 c

ho
le

st
as

is
 in

 in
te

rv
en

tio
n

SA
Es

 in
 1

1%
 o

f i
nt

er
ve

nt
io

n 
ve

rs
us

 9
%

 o
f p

la
ce

bo

Li
ra

gl
ut

id
e 

an
d 

se
m

ag
lu

tid
e 

ha
ve

 r
ec

ei
ve

d 
U

ni
te

d 
St

at
es

 F
oo

d 
an

d 
D

ru
g 

A
dm

in
is

tr
at

io
n 

ap
pr

ov
al

 fo
r 

ob
es

ity
 in

 a
ge

 1
2 

ye
ar

s 
an

d 
ab

ov
e.

A
E 

=
 a

dv
er

se
 e

ve
nt

; A
ST

 =
 a

sp
ar

ta
te

 tr
an

sa
m

in
as

e;
 B

M
I =

 b
od

y 
m

as
s 

in
de

x;
 %

BM
Ip

95
 =

 b
od

y 
m

as
s 

in
de

x 
pe

r 
ce

nt
 o

ve
r 

th
e 

95
th

 p
er

ce
nt

ile
; D

E 
=

 d
os

e 
es

ca
la

tio
n;

 E
TD

 =
 e

st
im

at
ed

 tr
ea

tm
en

t d
iff

er
en

ce
; G

I =
 g

as
tr

oi
nt

es
tin

al
; H

bA
1c

 =
 h

em
og

lo
bi

n 
A

1c
; H

D
L 

=
 h

ig
h-

de
ns

ity
 

lip
op

ro
te

in
; p

85
 =

 8
5t

h 
pe

rc
en

til
e;

 R
C

T 
=

 r
an

do
m

iz
ed

 c
on

tr
ol

le
d 

tr
ia

l; 
SA

E 
=

 s
er

io
us

 a
dv

er
se

 e
ve

nt
; S

D
 =

 s
ta

nd
ar

d 
de

vi
at

io
n;

 T
2D

 =
 ty

pe
 2

 d
ia

be
te

s;
 T

G
 =

 tr
ig

ly
ce

rid
e;

 z
BM

I =
 b

od
y 

m
as

s 
in

de
x 

Z-
sc

or
e.



43

Review Diabetes

touchREVIEWS in Endocrinology

Dulaglutide is the newest GLP-1RA approved by the FDA for adolescents 

10 years and older with T2D. A randomized, placebo-controlled trial was 

completed by the Assessment of Weekly Administration of LY2189265 

in Diabetes-Pediatric Study (AWARD-PEDS) investigators with 154 youth 

aged 10–17 years of age who received weekly injections of dulaglutide 

at a dose of either 0.75 mg, 1.5 mg or placebo for 26 weeks, followed 

by a 26-week open-label phase.7 At 26 weeks, there was a significant 

decrease in mean HbA1c of -0.6% in the 0.75 mg group and -0.9% in 

the 1.5 mg group (p<0.001 for both groups versus placebo). HbA1c 

levels of <7.0% were achieved in 51% of the pooled dulaglutide groups 

compared with 14% of the placebo group (p<0.001), and fasting glucose 

concentration also significantly decreased in the pooled dulaglutide 

groups (-18.9 mg/dL, p<0.001). Adverse events were similar between 

placebo and treatment arms (69%, 75% and 73% in the placebo, 

0.75 mg and 1.5 mg arms, respectively). Consistent with adult data, 

gastrointestinal adverse events (nausea, vomiting, diarrhoea) were more 

frequent in the dulaglutide group compared with the placebo group; 

the symptoms were mostly mild and were transient within 2 weeks of 

initiation. The study concluded that in youth with T2D, dulaglutide taken 

once weekly (0.75 mg or 1.5 mg) improved glycaemic control compared 

with placebo.

Contrary to findings from adult studies, the pivotal GLP-1RA paediatric 

T2D trials do not demonstrate significant improvement in weight loss. 

Adolescents with T2D display more insulin resistance and glycaemic 

failure compared with adults.1,19 GLP-1RA treatment of adults with T2D 

resulted in less weight loss compared with participants without T2D.67 

The AWARD-PEDS investigators thus speculated that the catabolic 

effect of hyperglycaemia in the placebo group may obscure detection of 

weight loss in the dulaglutide-treated groups. Although the mechanism 

is unknown, it is possible that the insulin resistance observed during 

adolescence may also contribute to the relative resistance to GLP-1RA-

mediated weight loss.

Safety and efficacy of glucagon-like peptide-1 
receptor agonists in paediatric obesity
Following the observed benefit of higher GLP-1RA doses on weight loss 

in adults, multiple studies have been conducted evaluating GLP-1RAs 

specifically for obesity in the adolescent population (Table 2).68–72 A study 

was completed in 2012 evaluating daily exenatide for weight loss in 

youth 9–16 years of age, with dose increased from 5 μg twice daily to 

10 μg twice daily over a 3-month period.70 Body mass index (BMI) (-1.7 

kg/m2, p=0.01) and total body weight (-3.9 kg, p=0.02) both decreased 

significantly. However, immediate-release exenatide has not received 

FDA approval for the indication of paediatric obesity. A subsequent 

study showed that extended-release exenatide may partially reduce the 

risk of BMI rebound in adolescents with severe obesity who achieved 

weight loss with dietary interventions.71 Currently, liraglutide (3 mg 

daily) is approved for youth aged 12 years and older with obesity, as a 

supplemental indication for chronic weight management. In a study of 

251 adolescents aged 12–17 years, liraglutide 3.0 mg daily was superior 

to placebo in terms of BMI Z-score change from baseline at 56 weeks, 

with an estimated treatment difference of -0.22 (p=0.002).68 A reduction 

in BMI of at least 5% was observed in 43.3% of the liraglutide group 

versus 18.7% in the placebo group, and a reduction in BMI of at least 10% 

was observed in 26.1% versus 8.1% in these groups, respectively. There 

was an estimated difference of -4.6% in absolute BMI and of -4.50 kg 

(-5.0%) in body weight, favouring liraglutide. Reductions in absolute BMI 

and per cent change in BMI were also seen in youth with obesity and T2D, 

when taking liraglutide for 52 weeks.69

More recently, the efficacy of an additional extended-release GLP-1RA, 

semaglutide, was studied in adolescents with obesity.72 Semaglutide 

at a dose of 2.4 mg weekly is approved for adults with obesity, or who 

are overweight and have weight-related coexisting conditions, for long-

term weight management as an adjunct to lifestyle modifications. In the 

recent randomized, placebo-controlled study of 201 youth aged 12–17 

years taking semaglutide at a dose of 2.4 mg weekly for 68 weeks, 

there was an estimated difference of -16.7% in mean change in BMI 

from baseline, favouring the semaglutide group (p<0.001). Weight loss 

of 5% or more was seen in 73% of the treatment group versus 18% in 

the placebo group. Improvement in cardiometabolic risk factors (waist 

circumference, lipids [except high-density lipoprotein cholesterol] and 

alanine aminotransferase) were also greater with semaglutide compared 

with placebo. Semaglutide 2.4 mg recently received FDA approval for the 

treatment of obesity in children 12 years and older.

Precautions with glucagon-like peptide-1 receptor 
agonists
Similar to adults, the most common side effects of GLP-1RAs in 

adolescents are gastrointestinal symptoms. GLP-1RAs should be initiated 

at a low dose, with a gradual titration to limit side effects and increase 

tolerability. The length of titration depends on the formulation. The use of 

GLP-1RAs is contraindicated in patients with a personal or family history 

of medullary thyroid carcinoma or in patients with multiple endocrine 

neoplasia type 2. Early concerns of possible pancreatitis risk have 

not been corroborated by more recent reports, although pancreatitis 

remains a contraindication to GLP-1RA use.73 In patients with suspected 

pancreatitis, GLP-1RAs should be discontinued and should not be 

resumed if the diagnosis is confirmed. Due to the risk for dehydration and 

acute kidney injury, patients who report gastrointestinal symptoms and 

have renal impairment should have monitoring of their renal function.

Barriers to glucagon-like peptide-1 receptor 
agonist use
Despite the FDA approval of liraglutide in 2019 for paediatric T2D, the 

uptake of GLP-1RAs in this population has been slow. Gourgari et al. 

assessed clinicians’ experience with prescribing GLP-1RA medications.74 

Members of the Pediatric Endocrine Society (n=102) completed a 

survey evaluating barriers and perceived outcomes. The primary 

intentions of GLP-1RA use were to lower HbA1c levels (88%) and for 

weight management (82%). Alternative indications included reduction 

of total daily insulin dose and the treatment of comorbidities such as 

nonalcoholic fatty liver disease, hypertension and irregular menses. In 

those who did not prescribe GLP-1RAs, lack of clinical experience was 

a primary barrier (42%, p=0.0024), especially in those with more than 

5 years of clinical experience. The majority initiated a GLP-1RA after 

unsuccessful treatment with metformin. About two-thirds of clinicians 

prescribed these medications in youth 12 years and older, while others 

(19%) initiated in those below 12 years of age. Liraglutide was the GLP-

1RA of choice in the majority of cases (93%, p<0.0001).

Beyond prescription pattern, GLP-1RA access may also be limited due to 

cost. As a class, the high cost of these medications contributes to limited 

insurance coverage of these medications, especially for the indication 

of obesity.75 The above clinician experience assessment by Gourgari et 

al. was conducted in the United States, where at least some proportions 

of patients were able to obtain insurance authorization. However, it is 

important to note that GLP-1RAs are typically not an insurance-covered 

benefit in developing countries. The average monthly cost of these 

medications in the United States ranges from US$930 for dulaglutide to 

US$1,349 for semaglutide and liraglutide, with annual costs ranging from 
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US$11,000 to US$16,000.76,77 Even when covered by insurance, the out-

of-pocket expense may be cost prohibitive.

Glucagon-like peptide/glucose-dependent 
insulinotropic polypeptide dual agonist therapy
Glucose-dependent insulinotropic polypeptide (GIP) is another gut-

secreted hormone with a dominant insulinotropic effect. Physiologically, 

it is secreted from the K cells in the duodenum and jejunum.78 In the 

adult population, tirzepatide, which is a GLP-1/GIP dual agonist, was 

demonstrated to be even more effective than GLP-1RA monotherapy. 

Studies in adults have shown that tirzepatide is superior to placebo, GLP-

1RAs and basal insulin in terms of glycaemic control and body weight 

reduction. Data are currently lacking in the paediatric population, and 

further studies are needed to support its potential use.

Future directions
Despite clinical guidelines recommending a 5–10% weight reduction for 

youth-onset T2D, there remains a gap regarding recommendations for 

utilization of novel agents that target the multifaceted pathophysiology 

of T2D in this age group. The recent FDA approval of several GLP-1RAs 

for paediatric T2D and obesity heralds a much-welcomed increase in the 

armamentarium for the management of these conditions. Much work is 

needed, however, to expand the use of GLP-1RAs in children.

Many barriers exist in gaining paediatric approval for medications 

already approved for adult use. The FDA mandates phase III clinical trials 

for all new medications for each clinical indication to protect patient 

safety. Completion of such trials in adolescents with T2D is difficult 

due to a relatively small patient population (compared with adults), 

stringent exclusion criteria, and the difficulty of participants/caregivers 

repeatedly taking time off from school and work.79 Families of historically 

marginalized races and ethnicities may also be reluctant to participate 

in clinical trials. Pragmatic designs are needed to allow trials to augment 

enrollment and overcome historical barriers. These strategies may 

include involvement of pertinent stakeholders in trial design, recruitment 

and execution.80 In addition, long-term follow-up studies will be needed 

to determine if GLP-1RAs render the same cardio- and renal-protective 

benefits in youth-onset T2D.

There may also need to be a shift in the paradigm in balancing conducting 

rigorous safety and efficacy trials of novel agents in paediatric cohorts, 

against prescribing these agents off-label when available evidence 

supports a substantial potential health benefit. For many clinicians, 

the lack of safety and efficacy data impacts prescribing practices and 

agent selection. Although sparse, the randomized controlled trials that 

do exist in youth support the efficacy and safety of GLP-RAs in this 

population. One might argue that once there is FDA approval of one 

agent in a class of medications, in the context of safety and efficacy data 

of other agents in the class among adults, the initial data are sufficient 

to begin the utilization of that agent if the benefit outweighs the risk. 

Consideration needs to be given to the health outcome of adolescents 

who cannot benefit from novel medications, due to the length of time 

required to conduct clinical trials in a relatively small patient population. 

Specifically, for GLP-1RAs, their mechanism of action may provide an 

opportunity to not only target weight reduction and glycaemic control, 

but also reduce cardiovascular, renal and hepatic risk factors, all of 

which could significantly improve the health trajectory of youth with T2D 

and associated microvascular and macrovascular complications. Taken 

together, the pharmacotherapy profile for GLP-1RAs is very favourable 

for youth-onset T2D. However, high cost and inadequate insurance 

coverage may continue to limit access to these agents in paediatric 

cohorts. Further investigation both at the policy and clinical guideline 

levels must be conducted to support an equitable and accessible roll-out 

of these agents into paediatric clinical care. q
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