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Epigenetics of type 2 diabetes mellitus (T2DM) has widened our knowledge of various aspects of the disease. The aim of this review 
is to summarize the important epigenetic changes implicated in the disease risks, pathogenesis, complications and the evolution of 
therapeutics in our current understanding of T2DM. Studies published in the past 15 years, from 2007 to 2022, from three primary 

platforms namely PubMed, Google Scholar and Science Direct were included. Studies were searched using the primary term 'type 2 diabetes 
and epigenetics' with additional terms such as ‘risks’, ‘pathogenesis’, ‘complications of diabetes’ and ‘therapeutics’. Epigenetics plays 
an important role in the transmission of T2DM from one generation to another. Epigenetic changes are also implicated in the two basic 
pathogenic components of T2DM, namely insulin resistance and impaired insulin secretion. Hyperglycaemia-induced permanent epigenetic 
modifications of the expression of DNA are responsible for the phenomenon of metabolic memory. Epigenetics influences the development of 
micro- and macrovascular complications of T2DM. They can also be used as biomarkers in the prediction of these complications. Epigenetics 
has expanded our understanding of the action of existing drugs such as metformin, and has led to the development of newer targets to 
prevent vascular complications. Epigenetic changes are involved in almost all aspects of T2DM, from risks, pathogenesis and complications, 
to the development of newer therapeutic targets.

Article highlights
• Epigenetics refers to the heritable changes in DNA expression without changes in the genetic

code.

• Epigenetic changes are brought about by post-translational modifications of histone proteins, 

covalent modifications of DNA bases and microRNA.

• Epigenetics explains how environmental milieu such as diet, physical activity, circadian

rhythm, intrauterine malnutrition or maternal obesity interact with the genome of an

individual and lead to diseases such as type 2 diabetes mellitus (T2DM).

• Epigenetics also contributes substantially to the development of micro- and macrovascular

complications of T2DM.

• Current research to develop newer drugs that target the epigenetic dysregulation in T2DM is

ongoing.

Diabetes has become a global pandemic, with an estimated 536.6 million people living with 

diabetes worldwide in 2021, and this is likely to increase to 783.2 million by the year 2045.1 The 

primary pathophysiology of type 2 diabetes mellitus (T2DM) involves insulin resistance in the liver, 

adipose tissue and skeletal muscle, followed by defects in insulin secretion later in the course of 

the disease.2 Notably, T2DM is a polygenic disorder that develops complex interactions between 

genes and the environment.

Epigenetics refers to heritable changes in DNA expression without alterations in the genetic 

code.3 In the past few decades, understanding the epigenetics of T2DM has unravelled the 

missing pathogenic links in the causation of the disease.4 Simultaneously, it has also enabled 

us to understand the effects of environmental factors, such as diet and physical activity, on the 

pathogenesis of the disease. Epigenetic changes can be used as potential biomarkers to assess 

the risk of the onset of T2DM and vascular complications. Epigenetic alterations can also predict 

the response to therapy and lifestyle interventions, thereby offering a tool for precision medicine.4

With the ever-increasing knowledge of epigenomics,5 it is not possible to review all epigenetic 

mechanisms of T2DM comprehensively. In this review, we discuss the basic mechanisms 

of epigenetics and try to summarize the important epigenetic dysregulation implicated in 

pathogenesis, vascular complications and therapeutics to appreciate its impact on our current 

understanding of T2DM.
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Basics of epigenetic mechanisms
In the 1940s, the term 'epigenetics' was used to refer to the complex 

interactions between the genome and the environment.6 This concept 

has evolved significantly in the past 50 years. Riggs et al. defined 

epigenetics as “the study of mitotically and/or meiotically heritable 

changes in gene function that cannot be explained by changes in the 

DNA sequence”.3 Epigenetics-mediated differential gene expression can 

explain the heterogeneous functions of different cell types in the body 

despite them all carrying the same genetic information.6 It is now known 

that epigenetic changes also control non-coding regions of DNA, which 

are essential in various physiological and pathophysiological states.7 

Epigenetic changes can be classified into two types: direct epigenetics 

and indirect epigenetic, which is further subdivided into within indirect 

epigenetics and across indirect epigenetics.8 Direct epigenetics refers to 

the changes in gene expression occurring in an individual’s lifespan due 

to interactions with the environment. Within indirect epigenetics refers 

to the changes in gene expression that occur within the intrauterine 

environment. Finally, across indirect epigenetics refers to altered gene 

expression due to epigenetic changes inherited from ancestors.8 Hence, 

epigenetic changes can influence an individual’s genomic expression 

from when they are in the zygote state and throughout their whole 

lifespan, both as a ‘static expression’ (i.e. inherited from their ancestors) 

and a ‘dynamic expression’ (i.e. due to interactions with the environment).

The process of protein synthesis takes place in two steps: transcription, 

which is the synthesis of messenger RNA (mRNA) by copying a gene's 

DNA sequence, followed by translation, in which the information carried 

by mRNA is decoded to produce peptides by ribosomal RNA and 

transfer RNA. Epigenetics-mediated altered DNA expression can occur 

at the level of both transcription and translation. Covalent modifications 

of DNA bases (methylation) and modifications of histone proteins alter 

DNA expression at the level of transcription, whereas non-coding RNAs 

(specifically microRNAs [miRNAs]) affect the gene expression at the level 

of translation (Figure 1).8,9

DNA methylation is an enzymatic process by which a methyl group 

is covalently added to cytosine residues to alter the gene expression. 

It is carried out by enzymes belonging to the families of DNA methyl 

transferases (DNMT), namely DNMT1, DNMT2, DNMT3A, DNMT3B and 

DNMT3L.8–10 S-adenosyl methionine (a methyl donor) donates methyl 

groups to cytosine residues in CpG, or cytosine guanine (CG), dinucleotide 

sites. In humans, most of the promoter sites of DNA have a CpG island 

that is the target of these enzymes. The hypermethylation of the CpG 

sites of these target promoters prevents the process of transcription, 

thus silencing gene expression (Figure 2).11

Figure 1: Mechanism of epigenetic changes

ATP = adenosine triphosphate.

Figure 2: Methylated and unmethylated CpG islands of DNA 
causing gene repression and expression, respectively
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Histone proteins can be modified by methylation, acetylation, 

ubiquitination or phosphorylation.12 These modifications lead to 

changes in the structure of chromatin, causing the formation of either 

euchromatin, which results in gene expression, or heterochromatin, 

which results in gene silencing.13 Histone methylation can lead to the 

activation or repression of gene expression. Histone acetylation leads 

to a decrease in the positive charges of histone proteins, which in turn 

causes a decrease in its interactions with DNA and increased accessibility 

of transcription complexes to DNA (euchromatin), leading to increased 

gene expression. The opposite happens when deacetylation takes place 

(Figure 3).13

miRNAs are specialized non-coding RNAs about the size of 22 nucleotides 

in length.14 They are synthesized by DNA with the help of RNA polymerase 

II. From the nucleus, they reach the cytoplasm to bind to a specific target 

mRNA, resulting in the cleavage of bound mRNA causing translational

repression (Figure 4).14 MiRNAs can be regulated by processes of DNA

methylation, RNA modification and histone modification.

Epigenetics and type 2 diabetes mellitus
Epigenetics and risk of type 2 diabetes mellitus
The role of epigenetics in the onset of T2DM can be exemplified by 

studies showing an increased prevalence of diabetes in adulthood when 

there is a history of poor maternal nutrition or diabetes in the mother 

during gestation.15,16 It should be noted that both maternal malnutrition 

and gestational diabetes put the child at future risk of developing T2DM. 

Creating an undernutritional environment in utero, especially in early 

gestation, was hypothesized to lead to the epigenetic programming of 

various metabolic pathways in the foetus in anticipation of an adverse 

environment later in life.16 When these children are postnatally exposed 

to an abundance of nutrition, they are at risk of developing T2DM, obesity 

and metabolic syndrome. This phenomenon is referred to as the ‘thrifty 

phenotype’ hypothesis. It has been proposed that maternal malnutrition 

leads to decreased levels of leptin in the blood, which may later lead to 

obesity.16 Studies of the Dutch Hunger Winter famine cohort found that 

children exposed to famine in early gestation showed a 5.2% decrease 

in DNA methylation of the insulin-like growth factor 2 (IGF2) gene 

differentially methylated region compared with children who had normal 

maternal nutrition in pregnancy or were exposed to famine during 

the later part of pregnancy.17 Apart from these methylation changes, 

increased expression of miR-576-5p seems to play an important role 

in the pathogenesis of increased cardiometabolic risk.17 Furthermore, 

lower circulating levels of miR-15a, miR-29b, miR-126 and miR-223 and 

higher levels of miR-28-3p can predict the risk of developing T2DM.18

During postnatal life, factors such as diet, physical activity, sleep–

wake cycle and various environmental factors lead to changes in the 

epigenome and contribute to the risk of developing T2DM in the future.15 

An important RNA-binding protein, NONO, is an epigenetic regulator of 

genes, controlling various pathways of carbohydrate and fat metabolism 

in the liver in accordance with the availability of nutrition.19 NONO is 

pivotal in predicting an individual’s risk of developing T2DM.15,19

Yajnik depicted the thin-fat Indian phenotype in an article where he 

describes that Indian babies are born with low birth weight but are 

found to have higher visceral fat than their English counterparts and 

are predisposed to insulin resistance and T2DM in later life.20 The 

Developmental Origin of Health and Disease theory traces the origin of 

T2DM to intrauterine life followed by rapid childhood growth leading to a 

biphasic nutritional insult.21 Yajnik et al. have also reported that nutritional 

factors such as 1-C (methyl) metabolism with normal to high maternal 

folate levels and vitamin B12 deficiency in mothers predisposed Indian 

babies to higher adiposity and insulin resistance by foetal epigenetic 

changes.22

The complex interactions of epigenetics in the evolution and progression 

of T2DM are summarized in Figure 5.15

The epigenetics and pathogenesis of type 2 diabetes 
mellitus
Two primary components in the pathogenesis of T2DM are insulin 

resistance and impaired insulin secretion. Various studies have 

demonstrated altered DNA methylation of genes, namely PPARG, 

KCNQ1, TCF7L2 and insulin receptor substrate 1 (IRS1), that are involved 

in the actions of insulin at sites such as the liver, skeletal muscle and 

adipose tissue.23–31 Pancreatic islets of patients with T2DM have 

shown decreased expression of genes involved in insulin secretion, 

such as PPARGC1A, INS and PDX1, due to increased methylation.32–34 

Decreased expression of PPARGC1A is also noted in the skeletal 

Figure 3: Histone acetylation causing the formation of 
euchromatin (active chromatin) and deacetylation causing 
the formation of heterochromatin (silent chromatin)

Figure 4: Mechanism of microRNA causing cleavage of target 
messenger RNA, leading to translational repression

miRNA = microRNA; mRNA = messenger RNA; tRNA = transfer RNA.
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muscles of subjects with T2DM.35 Further human and animal studies of 

skeletal muscle suggested methylation defects in genes that regulate 

insulin sensitivity, such as NDUFB6,36 COX5a,37 OXPHOS,38 PGC-1α,39 

PDK4 and PPAR-δ.40 Studies in rats with obesity induced by a high-fat 

diet suggested increased methylation and, subsequently, decreased 

expression of glucokinase and L-type pyruvate kinase promoter regions, 

which are involved in the pathogenesis of insulin resistance in the liver.41 

Upregulation of histone deacetylase 7 (HDAC7) in human pancreatic cells 

of individuals with T2DM was found to be associated with a decrease 

in glucose-mediated insulin secretion.42 Acetylation of the FOXO1 gene, 

which controls PDX1, leads to an impact on beta-cell development 

and glucose homeostasis.43 HDAC6-mediated histone3 lysine 9 (H3K9) 

deacetylation leads to the downregulation of the IRS2 protein, which in 

turn leads to the development of insulin resistance.44 MiRNAs were found 

to be important in the processes of beta-cell dysfunction and beta-cell 

survival, both of which are crucial events in the pathogenesis of T2DM.45 

The miRNA MiR-375 participates in the development of the pancreas and 

decreases insulin secretion by inhibiting myotrophin.46 Another miRNA, 

miR-124a, impacts insulin secretion with a mechanism similar to that of 

miR-375.47 MiR-29a and MiR-29b inhibit the secretion of insulin by their 

inhibitory actions on monocarboxylate transporter 1 (MCT1).48 MiR-184 

can induce beta-cell replication, thus causing an increase in the beta-

cell population.49 MiRNAs also contribute to the pathogenesis of insulin 

resistance by their action on the phosphoinositol-3 kinase (PI3K)/AKT and 

other insulin signalling pathways.50 The following MiRNAs regulate these 

proteins: miR-128a, miR-96 and miR-126, which control the expression of 

the IRS-1; miR-29, miR-384-5p and miR-1, which regulate PI3K expression; 

miR-143, miR-145, miR-29, miR-383, miR-33a, miR-33b and miR-21, which 

modulate AKT expression; and miR-133a, miR-133b, miR-223 and miR-

143, which control the expression of the glucose transporter GLUT4.51

Epigenetics and complications of type 2 diabetes 
mellitus
Metabolic memory
Metabolic memory, or legacy effect, refers to the benefits of early good 

glycaemic control to the overall positive effects in the course of T2DM.52,53 

Good glycaemic control early in the natural history of T2DM leads to 

long-term protection from micro- and macrovascular complications 

irrespective of the glycaemic status in the later part of the disease.52,53 On 

the other hand, due to metabolic memory, initial poor glycaemic control 

may lead to a higher risk for vascular complications in the later course 

of the disease.52 The evidence for this effect comes from three large, 

randomized controlled trials with long-term follow-up data, namely the 

Diabetes control and complications trial in type 1 diabetes,54 the United 

Kingdom prospective diabetes study55 and Steno-2 in T2DM.56 In these 

studies, patients who were in the initial intensive arm continued to show 

decreased incidence of vascular (both micro and macro) complications 

on long-term follow-up compared with patients who were initially in 

the conventional arm and later switched to intensive therapy despite 

presenting similar glycaemic status in the later phases.

The basic pathophysiological mechanisms of metabolic memory are 

hyperglycaemia-induced damage to mitochondrial DNA and its proteins, 

stimulation of protein kinase C, activation of sorbitol pathway and 

formation of advanced glycation end products.57 It has been proposed 

that hyperglycaemia leads to permanent epigenetic modifications of 

DNA expression of the abovementioned pathways that are consistent 

with poor glycaemic states, and they continue to persist even after good 

control is achieved at a later stage (Figure 6).58 Epigenetic mechanisms 

include changes in post-translational histone modifications, DNA 

methylation and miRNAs leading to irreversible changes, referred to as 

metabolic memory.59

Endothelial dysfunction
Endothelial dysfunction seems to be a crucial component in the 

development of all vascular complications of diabetes. Chronic, 

uncontrolled hyperglycaemia leads to vascular damage by multiple 

pathways, namely oxidative stress, increased production of advanced 

glycation end products, activation of inflammatory and fibrotic pathways 

by transforming growth factor-beta (TGF-β), nuclear factor κβ (NF-κβ) and 

angiotensin II (AngII).15 Endothelin 1 (ET-1), a peptide produced by the 

vascular endothelium, causes vasoconstriction and increased fibrosis, 

and is known to be abundant in patients with vascular complications in 

T2DM.60 Methylation defects are noted in the CpG regions of the promoter 

of the EDN1 gene, which leads to its overexpression.59 Decreased 

methylation and increased acetylation of histone proteins in the NF-κB 

gene promoter region leads to overexpression of this proinflammatory 

marker in the endothelial cells.61 Increased acetylation of histone H3K9/

K14 leads to the overexpression of other inflammatory markers, such as 

interlukin-8 (IL-8) and heme oxygenase gene 1 (HMOX1), in the endothelial 

cells of the aorta.61 Hyperglycaemia affects H3K9 demethylation, leading 

to increased expression of matrix metallopeptidase-9 (MMP-9), which in 

Figure 5: Epigenetics and type 2 diabetes – complex interactions at various levels

IUGR = intrauterine growth restriction; T2DM = type 2 diabetes mellitus.
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turn causes damage to the mitochondria and endothelial cell death.62 

MiR-140-5p, miR-221-3p, miR-200b and miR-130b-3p participate in the 

pathogenesis of endothelial dysfunction by targeting several genes 

related to apoptosis, inflammation, hyperpermeability, senescence and 

pathological angiogenesis.63 Apart from the these microRNAs, miR-126 

overexpression is associated with endothelial dysfunction of peripheral 

arterial disease in T2DM.64

Macrovascular complications
DNA methylation defects are noted in genes involved in the formation of 

atherosclerotic plaques, such as SOD2, FGF2, ABCA1, COX2 and SMAD 

7.65 DNA demethylation causing overexpression of the KLF4, KLF5 and 

OPN genes leads to the increased mitotic activity of smooth muscle cells 

in coronary vasculature.66 Hyperacetylation of histone proteins H3K9 

and H3K27 has been implicated in stabilizing atherosclerotic plaques.67 

Moreover, alteration in histone proteins associated with oxidized low-

density lipoprotein-mediated inflammatory response is crucial in the 

pathogenesis of coronary artery disease (CAD) in T2DM. In one study, 

miR-126 levels were found to be inversely correlated with serum low-

density lipoprotein in T2DM patients with underlying CAD compared with 

T2DM without CAD.68 Two important miRNAs, namely miR-1 and miR-133, 

have been shown to be significantly correlated to the risk for CAD in 

T2DM, such that they can be considered biomarkers for macrovascular 

complications.69,70 Other miRNAs, such as miR-210,71 miR-2172 and miR-

370,73 are also shown to be associated with T2DM-related CAD. Altered 

levels of miR-451a,74 miR-195-5p75 and miR-146a76 are associated with 

cerebrovascular events in T2DM.

Microvascular complications
Diabetic retinopathy
Diabetic retinopathy (DR) is an important cause of blindness in adults 

worldwide and its presentation spectrum can range from non-proliferative 

retinoapthy (mild, moderate and severe) to proliferative retinopathy, 

which is associated with new vessel formation and haemorrhages. 

Both proliferative and non-proliferative DR can be associated with 

macular oedema, which can further cause severe morbidity. Global DNA 

methylation seems to be increased early in the course of the development 

of DR but does not increase further with disease progression.77,78 Animal 

studies have demonstrated the contribution of hypermethylation of 

mitochondrial DNA and DNA polymerase gamma to the pathogenesis 

of DR.79–81 The modification of histone proteins seems to be associated 

with neuronal cell death and increased vascular permeability of retinal 

vessels.82,83 Methylation of the histone protein H3K9 by the histone 

methyl transferase encoded by SUV39H2 is associated with DR onset.84 

Increased H3 histone acetylation is noted in animal models of DR linked 

to activation of the NF-kβ inflammatory pathway.85 In uncontrolled 

T2DM, alterations in histone proteins lead to MMP-9 overexpression in 

retinal capillaries, leading to mitochondrial dysfunction and cell death.86 

Wide arrays of miRNAs take part in the initiation and progression of 

DR. MiR-126 regulates the expression of vascular endothelial growth 

factor 1 (VEGF1) and other vascular adhesion molecules, which are of 

considerable importance to the pathogenesis of proliferative DR.87 There 

is decreased expression of miR-31 and miR-184, which in physiological 

states inhibit new vessel formation.88 Increased expression of miR-21 is 

of paramount importance in the pathogenesis of DR by contributing to 

endothelial dysfunction.89 Circulating miRNAs can be used as biomarkers 

for the early and late complications of DR. One example of such miRNA 

is miR-210, the levels of which are higher in individuals with DR than in 

those without.90 Furthermore, the levels of miR-210 are much higher in 

proliferative DR than in non-proliferative DR.

Diabetic nephropathy
Diabetes-related kidney disease is the leading cause of chronic kidney 

disease worldwide and can present both with or without albuminuria.

Genome-wide studies have shown that increased DNA methylation is 

correlated with inflammation in diabetic nephropathy.91,92 In animal 

models of T2DM nephropathy, hypermethylation of the promoter 

region of Ras protein activator like 1 (RASAL1) has been noted.93,94 

Increased expression of transforming growth factor-beta 1 (TGF-β1) in 

diabetic kidney disease leads to hypermethylation of RASAL-1 causing 

activation of Ras-GTP signalling.95 This mechanisam results in collagen 

deposition and fibrosis, which is an important step in the pathogenesis of 

diabetic nephropathy96,97 Altered cytosine methylation in the promotor 

regions of the mammalian target of rapamycin (mTOR) is conducive to 

the inflammation of nephropathy.95 Another study showed decreased 

expression of the transcription factor Krüppel-like factor 4 (KLF4), leading 

to the hypermethylation of the nephrotic syndrome type 1 (NPHS1) 

gene, which encodes nephrin, podocyte cell death and albuminuria.98,99 

Decreased methylation of the myoinositol oxygenase (MIOX) gene 

is associated with diabetic nephropathy progression by increasing 

oxidative stress and fibrosis.100 Alteration of histone proteins leads to 

Figure 6: Mechanism of ‘legacy effect’

AGE = advanced gycation end product.
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increased TXNIP gene expression, causing increased inflammation 

of mesangial cells.101 High levels of expression of HDAC4 in diabetic 

nephropathy promote inflammatory changes by inhibiting the STAT1 

pathway.102 Mouse models of streptozotocin-induced albuminuria have 

shown reduced expression of Sirtuin 1/silent information regulator 1 

(SIRT1), a histone deacetylase, which leads to decreased expression of 

claudin-1 in podocytes.103,104 MiR-133b, miR-199b,105 miR-23a106 and miR-

30e107 contribute to renal fibrosis, whereas miR-146a is associated with 

the activation of inflammatory pathways.108 Furthermore, the urinary 

exosomal miRNA can potentially be used as a biomarker for the onset 

of diabetic nephropathy.109 For example, increased urinary levels of miR-

1915-5p,110 miR-877-3p,111 miR-192 and miR-215 are found in patients 

with T2DM with diabetic nephropathy.112

Diabetic neuropathy
Diabetic neuropathy is the most common microvascular complication of 

diabetes, is due to involvement of long nerve fibres and usually presents 

as distal symmetric polyneuropathy. Decreased DNA methylation of 

the whole genomic DNA in white blood cells is a potential biomarker 

for diabetic neuropathy.113 DNA methylation defects have been seen 

across many genes coding for proteins affecting multiple steps in 

the pathogenesis of diabetic neuropathy, such as axon guidance, 

glycerophospholipid metabolism and mitogen-activated protein 

kinase (MAPK) signalling pathways.114 Hypermethylation of the NINJ2 

gene and its subsequent decreased expression have been observed 

in diabetic neuropathy.115 This protein, expressed in Schwann cells, 

is essential for the regeneration of peripheral nerves after injury.115 

Increased expression of miR-199a3p, which causes the downregulation 

of the extracellular serine protease inhibitor E2 (Serpin E2), has been 

attested in the peripheral blood of patients with diabetic neuropathy.116 

Decreased expression of miR-25,117 miR-146118,119 and miR-190a5p120 

has been noted in animal models of diabetic neuropathy. This results 

in the modulation of oxidative stress, interleukins and various other 

inflammatory processes resulting in neuronal injury.121 Other miRNAs 

significant to the pathogenesis of diabetic neuropathy are miR-128a, 

miR-155a and miR-499a, which can potentially be used as biomarkers for 

the screening of diabetic neuropathy.122

Diabetic cardiomyopathy
Diabetic cardiomyopathy is defined as presence of cardiac dysfunction 

in patients with diabetes in the absence of any other explainable causes 

such as CAD, valvular heart disease or hypertenion. Epigenetic changes 

lead to the overexpression of genes of the renin–angiotensin–aldosterone 

system (RAAS) axis, which is crucial in the pathogenesis of diabetic 

cardiomyopathy.123–125 Diabetic cardiomyopathy is associated with 

hypermethylation of the protein sarcoplasmic/endoplasmic reticulum 

calcium-ATPase 2a (SERCA2a), which is physiologically important for 

cardiac muscle relaxation.126 This decreased expression of SERCA2a 

can explain the diastolic dysfunction seen in diabetic cardiomyopathy.123 

MiRNAs are pivotal in various steps of the pathogenesis of 

cardiomyopathy, such as muscle hypertrophy,127 fibrosis,128 mitochondrial 

dysfunction,129 cell death130 and foetal genetic programming.131 Foetal 

genetic reprogramming involves decreased expression of the alpha 

myosin heavy chain (α-MHC) gene and increased expression of the beta 

myosin heavy chain (β-MHC) gene, which contribute to the development 

of diabetic cardiomyopathy.131 Altered expression of some miRNAs – 

namely miR-1,132 miR-146a,133 miR-133a,134 miR-150,135 miR-200c,136 miR-

152-3p,137 miR-26a/b-5p,138 miR-29b-3p139 and miR-223140 – is crucial in 

the hypertrophy and fibrosis of cardiac muscles.

Epigenetics and therapeutics of type 2 diabetes 
mellitus
Understanding epigenetics has led to the possibility of using epigenetic 

changes as biomarkers for predictjng the risk of developing T2DM, 

its complications and for the development of therapeutic targets. As 

discussed above, many miRNA levels can be used as biomarkers of 

microvascular and macrovascular complications. There is evidence to 

suggest that inhibition of specific miRNAs that are involved in the loss 

of beta-cell function or beta-cell death can result in the improvement of 

beta-cell functions.45 Histone deacetylase inhibitors can improve insulin 

sensitivity by increasing the acetylation of lysine amino acids in the 

insulin receptor substrate 2 (IRS2) protein.141 Apabetalone, a new drug, 

acts by blocking histone interactions with DNA; this action has been 

shown to prevent the rise in inflammatory proteins and the development 

of atherosclerotic plaques.142 Supplementation with lactobacillus can 

cause changes in the histone methylation profile and improve insulin 

resistance.143 Treatment of T2DM with metformin causes reduced DNA 

methylation of genes coding for metfomin transporters, leading to their 

increased expression and, thus upregulating the beneficial effects on 

glycaemic control and insulin resistance.144,145 Metformin also causes 

alteration in the expression of various histone methyl transferases 

and SIRT1 (deacetylase).144 Glucagon-like peptide 1 (GLP1) receptor 

analogues, which are currently used for managing T2DM, help preserve 

beta-cell function by histone modifications and reactivation of pdx-1 

transcription.146,147 GLP1 receptor analogues also lead to improvements 

in the fatty liver, which is mediated by modulation of SIRT1 (deacetylase) 

and decrease in the expression of NF‐κB.148

New-onset diabetes that occurs during statin therapy is postulated to 

be due to DNA methylation defects leading to the dysregulation of ATP-

binding cassette subfamily G member 1 (ABCG1).149

MiRNA-based therapeutics aimed at targeting various levels of the 

pathogenesis of T2DM are being tested in animal studies.150–154 

MiRNA inhibitors can be used to suppress the overexpression of 

pathogenic miRNA, and miRNA mimics can be used for overcoming the 

underexpression pathology.155,156 Antisense oligonucleotides can also be 

used to modulate miRNA expression.

Conclusions
This review summarizes the evidence supporting the substantial 

contribution of epigenetics to the pathogenesis and complications of 

T2DM. Epigenetic modifications start in the intrauterine environment 

and continue throughout an individual's life. Epigenetics influences the 

transmission of T2DM across generations. It also explains how adverse 

environmental milieus such as food habits, sedentary lifestyle, circadian 

rhythm, maternal malnutrition or maternal obesity interact with an 

individual's genome, leading to various disease states such as T2DM. In 

addition, epigenetics is instrumental in developing various micro- and 

macrovascular complications of T2DM. Research is being conducted 

to develop epigenetic biomarkers that predict the risk of T2DM and its 

vascular complications. Newer drugs under development aim to correct 

the epigenetic dysregulation in T2DM. However, further research is 

required to identify the epigenetic regulators specific to T2DM before 

novel therapies addressing the pathogenesis and complications of T2DM 

can be developed. q



52

Epigenetics of the Pathogenesis and Complications of Type 2 Diabetes Mellitus

touchREVIEWS in Endocrinology

	1.	 Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: Global, 
regional and country-level diabetes prevalence estimates 
for 2021 and projections for 2045. Diabetes Res Clin Pract. 
2022;183:109119. DOI: 10.1016/j.diabres.2021.109119

	2.	 Ali O. Genetics of type 2 diabetes. World J Diabetes. 
2013;4:114–23. DOI: 10.4239/wjd.v4.i4.114

	3.	 Riggs AD, Porter TN. Overview of epigenetic mechanisms. In: 
RussoVEA, MartienssenR, RiggsAD, eds. Epigenetic Mechanisms 
of Gene Regulation. Cold Spring Harbor, NY: Cold Spring Harbor 
Laboratory Press, 1996: 29–45.

	4.	 Ling C, Bacos K, Rönn T. Epigenetics of type 2 diabetes mellitus 
and weight change – A tool for precision medicine? Nat 
Rev Endocrinol. 2022;18:433–48. DOI: 10.1038/s41574-022-
00671-w

	5.	 National Cancer InstituteEpigenomics and epigenetics 
research. Available at: https://epi.grants.cancer.gov/
epigen/#:~:text=Epigenetics%20focuses%20on%​
20processes%20that,a%20cell%20or%20entire%20organism 
(accessed date: 27 March 2023)

	6.	 Waddington CH. The epigenotype. Endeavour. 1942;1:18–20.
	7.	 Zhou Z, Lin Z, Pang X, et al. Epigenetic regulation of long non-

coding RNAs in gastric cancer. Oncotarget. 2018;9:19443–58. 
DOI: 10.18632/oncotarget.23821

	8.	 Lacal I, Ventura R. Epigenetic inheritance: Concepts, 
mechanisms and perspectives. Front Mol Neurosci. 
2018;11:292. DOI: 10.3389/fnmol.2018.00292

	9.	 Dupont C, Armant DR, Brenner CA. Epigenetics: Definition, 
mechanisms and clinical perspective. Semin Reprod Med. 
2009;27:351–57. DOI: 10.1055/s-0029-1237423

	10.	 Jin B, Li Y, Robertson KD. DNA methylation: Superior or 
subordinate in the epigenetic hierarchy? Genes Cancer. 
2011;2:607–17. DOI: 10.1177/1947601910393957

	11.	 Schaefer M, Pollex T, Hanna K, et al. RNA methylation by 
DNMT2 protects transfer RNAs against stress-induced 
cleavage. Genes Dev. 2010;24:1590–95. DOI: 10.1101/
gad.586710

	12.	 Zarkesh M, Ehsandar S, Hedayati M. Genetic and epigenetic 
aspects of type 2 diabetes mellitus: A review. Austin 
Endocrinol Diabetes Case Rep. 2016;1:1004.

	13.	 Małodobra-Mazur M, Cierzniak A, Myszczyszyn A, et al. 
Histone modifications influence the insulin-signaling genes 
and are related to insulin resistance in human adipocytes. 
Int J Biochem Cell Biol. 2021;137:106031. DOI: 10.1016/j.
biocel.2021.106031

	14.	 O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA 
biogenesis, mechanisms of actions, and circulation. 
Front Endocrinol (Lausanne). 2018;9:402. DOI: 10.3389/
fendo.2018.00402

	15.	 Dhawan S, Natarajan R. Epigenetics and type 2 diabetes risk. 
Curr Diab Rep. 2019;19:47. DOI: 10.1007/s11892-019-1168-8

	16.	 Smith CJ, Ryckman KK. Epigenetic and developmental 
influences on the risk of obesity, diabetes, and metabolic 
syndrome. Diabetes Metab Syndr Obes. 2015;8:295–302. DOI: 
10.2147/DMSO.S61296

	17.	 Doan TNA, Akison LK, Bianco-Miotto T. Epigenetic
mechanisms responsible for the transgenerational
inheritance of intrauterine growth restriction phenotypes. 
Front Endocrinol (Lausanne). 2022;13:838737. DOI: 10.3389/
fendo.2022.838737

	18.	 Chen H, Lan HY, Roukos DH, Cho WC. Application 
of microRNAs in diabetes mellitus. J Endocrinol. 
2014;222:R1–R10. DOI: 10.1530/JOE-13-0544

	19.	 Benegiamo G, Brown SA, Panda S. RNA dynamics in 
the control of circadian rhythm. Adv Exp Med Biol. 
2016;907:107–22. DOI: 10.1007/978-3-319-29073-7_5

	20.	 Yajnik CS. Confessions of a thin-fat Indian. Eur J Clin Nutr. 
2018;72:469–73. DOI: 10.1038/s41430-017-0036-3

	21.	 Bianco-Miotto T, Craig JM, Gasser YP, et al. Epigenetics and 
DOHAD: From basics to birth and beyond. J Dev Orig Health 
Dis. 2017;8:513–19. DOI: 10.1017/S2040174417000733

	22.	 Yajnik CS, Deshpande SS, Jackson AA, et al. Vitamin B12
and folate concentrations during pregnancy and insulin
resistance in the offspring: The Pune Maternal Nutrition
Study. Diabetologia. 2008;51:29–38. DOI: 10.1007/s00125-007-
0793-y

	23.	 Barrès R, Osler ME, Yan J, et al. Non-CPG methylation 
of the PGC-1alpha promoter through DNMT3B controls 
mitochondrial density. Cell Metab. 2009;10:189–98. DOI: 
10.1016/j.cmet.2009.07.011

	24.	 Nilsson E, Jansson PA, Perfilyev A, et al. Altered DNA 
methylation and differential expression of genes influencing 
metabolism and inflammation in adipose tissue from subjects 
with type 2 diabetes. Diabetes. 2014;63:2962–76. DOI: 
10.2337/db13-1459

	25.	 Nilsson E, Matte A, Perfilyev A, et al. Epigenetic alterations 
in human liver from subjects with type 2 diabetes in 
parallel with reduced folate levels. J Clin Endocrinol Metab. 
2015;100:E1491–501. DOI: 10.1210/jc.2015-3204

	26.	 Nitert MD, Dayeh T, Volkov P, et al. Impact of an exercise 
intervention on DNA methylation in skeletal muscle from first-
degree relatives of patients with type 2 diabetes. Diabetes. 
2012;61:3322–32. DOI: 10.2337/db11-1653

	27.	 Ribel-Madsen R, Fraga MF, Jacobsen S, et al. Genome-wide 
analysis of DNA methylation differences in muscle and fat 
from monozygotic twins discordant for type 2 diabetes. PLoS 
One. 2012;7:e51302. DOI: 10.1371/journal.pone.0051302

	28.	 Kirchner H, Sinha I, Gao H, et al. Altered DNA methylation of 
glycolytic and lipogenic genes in liver from obese and type 2 
diabetic patients. Mol Metab. 2016;5:171–83. DOI: 10.1016/j.
molmet.2015.12.004

	29.	 Abderrahmani A, Yengo L, Caiazzo R, et al. Increased hepatic 
PDGF-AA signaling mediates liver insulin resistance in obesity-

associated type 2 diabetes. Diabetes. 2018;67:1310–21. DOI: 
10.2337/db17-1539

	30.	 Baumeier C, Saussenthaler S, Kammel A, et al. Hepatic 
DPP4 DNA methylation associates with fatty liver. Diabetes. 
2017;66:25–35. DOI: 10.2337/db15-1716

	31.	 You D, Nilsson E, Tenen DE, et al. Dnmt3a is an epigenetic 
mediator of adipose insulin resistance. Elife. 2017;6:1–20. DOI: 
10.7554/eLife.30766

	32.	 Yang BT, Dayeh TA, Kirkpatrick CL, et al. Insulin promoter
DNA methylation correlates negatively with insulin gene
expression and positively with hba(1c) levels in human
pancreatic islets. Diabetologia. 2011;54:360–7. DOI: 10.1007/
s00125-010-1967-6

	33.	 Ling C, Del Guerra S, Lupi R, et al. Epigenetic regulation of 
PPARGC1A in human type 2 diabetic islets and effect on 
insulin secretion. Diabetologia. 2008;51:615–22. DOI: 10.1007/
s00125-007-0916-5

	34.	 Yang BT, Dayeh TA, Volkov PA, et al. Increased DNA 
methylation and decreased expression of PDX-1 in pancreatic 
islets from patients with type 2 diabetes. Mol Endocrinol. 
2012;26:1203–12. DOI: 10.1210/me.2012-1004

	35.	 Gillberg L, Jacobsen SC, Ribel-Madsen R, et al. Does DNA 
methylation of PPARGC1A influence insulin action in first 
degree relatives of patients with type 2 diabetes? PLoS One. 
2013;8:e58384. DOI: 10.1371/journal.pone.0058384

	36.	 Ling C, Poulsen P, Simonsson S, et al. Genetic and epigenetic 
factors are associated with expression of respiratory chain 
component NDUFB6 in human skeletal muscle. J Clin Invest. 
2007;117:3427–35. DOI: 10.1172/JCI30938

	37.	 Gong Y, Liu Y, Li J, et al. Hypermethylation of cox5a promoter is 
associated with mitochondrial dysfunction in skeletal muscle 
of high fat diet-induced insulin resistant rats. PLoS One. 
2014;9:e113784. DOI: 10.1371/journal.pone.0113784

	38.	 Rönn T, Poulsen P, Hansson O, et al. Age influences DNA 
methylation and gene expression of COX7A1 in human 
skeletal muscle. Diabetologia. 2008;51:1159–68. DOI: 10.1007/
s00125-008-1018-8

	39.	 Barres R, Kirchner H, Rasmussen M, et al. Weight loss after 
gastric bypass surgery in human obesity remodels promoter 
methylation. Cell Rep. 2013;3:1020–7. DOI: 10.1016/j.
celrep.2013.03.018

	40.	 Barrès R, Yan J, Egan B, et al. Acute exercise remodels 
promoter methylation in human skeletal muscle. Cell Metab. 
2012;15:405–11. DOI: 10.1016/j.cmet.2012.01.001

	41.	 Jiang M, Zhang Y, Liu M, et al. Hypermethylation of hepatic 
glucokinase and L-type pyruvate kinase promoters in high-fat 
diet-induced obese rats. Endocrinology. 2011;152:1284–9. DOI: 
10.1210/en.2010-1162

	42.	 Daneshpajooh M, Bacos K, Bysani M, et al. HDAC7 is 
overexpressed in human diabetic islets and impairs insulin 
secretion in rat islets and clonal beta cells. Diabetologia. 
2017;60:116–25. DOI: 10.1007/s00125-016-4113-2

	43.	 Nakae J, Biggs WH, Kitamura T, et al. Regulation of insulin 
action and pancreatic beta-cell function by mutated alleles of 
the gene encoding forkhead transcription factor FOXO1. Nat 
Genet. 2002;32:245–53. DOI: 10.1038/ng890

	44.	 Dalfrà MG, Burlina S, Del Vescovo GG, Lapolla A. Genetics and 
epigenetics: New insight on gestational diabetes mellitus. 
Front Endocrinol (Lausanne). 2020;11:602477. DOI: 10.3389/
fendo.2020.602477

	45.	 Ofori JK, Karagiannopoulos A, Nagao M, et al. Human islet 
microRNA-200c is elevated in type 2 diabetes and targets the 
transcription factor ETV5 to reduce insulin secretion. Diabetes. 
2022;71:275–84. DOI: 10.2337/db21-0077

	46.	 Dumortier O, Fabris G, Pisani DF, et al. MicroRNA-375 regulates 
glucose metabolism-related signaling for insulin secretion. J 
Endocrinol. 2020;244:189–200. DOI: 10.1530/JOE-19-0180

	47.	 Sebastiani G, Po A, Miele E, et al. MicroRNA-124a is 
hyperexpressed in type 2 diabetic human pancreatic islets 
and negatively regulates insulin secretion. Acta Diabetol. 
2015;52:523–30. DOI: 10.1007/s00592-014-0675-y

	48.	 Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA. MiR-29a and 
mir-29b contribute to pancreatic beta-cell-specific silencing 
of monocarboxylate transporter 1 (mct1). Mol Cell Biol. 
2011;31:3182–94. DOI: 10.1128/MCB.01433-10

	49.	 Tattikota SG, Rathjen T, Hausser J, et al. MiR-184 regulates 
pancreatic β-cell function according to glucose metabolism. J 
Biol Chem. 2015;290:20284–94. DOI: 10.1074/jbc.M115.658625

	50.	 Zhong F-Y, Li J, Wang Y-M, et al. MicroRNA-506 modulates 
insulin resistance in human adipocytes by targeting S6K1 
and altering the IRS1/PI3K/AKT insulin signaling pathway. J 
Bioenerg Biomembr. 2021;53:679–92. DOI: 10.1007/s10863-
021-09923-2

	51.	 Improta-Caria AC, De Sousa RAL, Roever L, et al. MicroRNAs 
in type 2 diabetes mellitus: Potential role of physical exercise. 
Rev Cardiovasc Med. 2022;23:29. DOI: 10.31083/j.rcm2301029

	52.	 Aschner PJ, Ruiz AJ. Metabolic memory for vascular disease 
in diabetes. Diabetes Technol Ther. 2012;14(Suppl. 1):S68–74. 
DOI: 10.1089/dia.2012.0012

	53.	 Zhang L, Chen B, Tang L. Metabolic memory: Mechanisms and 
implications for diabetic retinopathy. Diabetes Res Clin Pract. 
2012;96:286–93. DOI: 10.1016/j.diabres.2011.12.006

	54.	 Nathan DM, Cleary PA, Backlund J-Y, et al. Intensive diabetes 
treatment and cardiovascular disease in patients with type 
1 diabetes. N Engl J Med. 2005;353:2643–53. DOI: 10.1056/
NEJMoa052187

	55.	 Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of 
intensive glucose control in type 2 diabetes. N Engl J Med. 
2008;359:1577–89. DOI: 10.1056/NEJMoa0806470

	56.	 Gæde P, Oellgaard J, Carstensen B, et al. Years of life gained 
by multifactorial intervention in patients with type 2 diabetes 
mellitus and microalbuminuria: 21 years follow-up on the 

steno-2 randomised trial. Diabetologia. 2016;59:2298–307. 
DOI: 10.1007/s00125-016-4065-6

	57.	 Testa R, Bonfigli AR, Prattichizzo F, et al. The “metabolic 
memory” theory and the early treatment of hyperglycemia in 
prevention of diabetic complications. Nutrients. 2017;9:437. 
DOI: 10.3390/nu9050437

	58.	 Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in 
diabetic complications and metabolic memory. Diabetologia. 
2015;58:443–55. DOI: 10.1007/s00125-014-3462-y

	59.	 Jin J, Wang X, Zhi X, Meng D. Epigenetic regulation in diabetic 
vascular complications. J Mol Endocrinol. 2019;63:R103–115. 
DOI: 10.1530/JME-19-0170

	60.	 Ergul A. Endothelin-1 and diabetic complications: Focus 
on the vasculature. Pharmacol Res. 2011;63:477–82. DOI: 
10.1016/j.phrs.2011.01.012

	61.	 Prattichizzo F, Giuliani A, Ceka A, et al. Epigenetic mechanisms 
of endothelial dysfunction in type 2 diabetes. Clin Epigenetics. 
2015;7:56. DOI: 10.1186/s13148-015-0090-4

	62.	 Kowluru RA, Shan Y. Role of oxidative stress in epigenetic 
modification of MMP-9 promoter in the development of 
diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 
2017;255:955–62. DOI: 10.1007/s00417-017-3594-0

	63.	 Kowluru RA, Shan Y, Mishra M. Dynamic DNA methylation of 
matrix metalloproteinase-9 in the development of diabetic 
retinopathy. Lab Invest. 2016;96:1040–9. DOI: 10.1038/
labinvest.2016.78

	64.	 Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microrna 
profiling reveals loss of endothelial mir-126 and other 
micrornas in type 2 diabetes. Circ Res. 2010;107:810–7. DOI: 
10.1161/CIRCRESAHA.110.226357

	65.	 Pang M, Li Y, Gu W, et al. Recent advances in epigenetics of 
macrovascular complications in diabetes mellitus. Heart Lung 
Circ. 2021;30:186–96. DOI: 10.1016/j.hlc.2020.07.015

	66.	 Prandi FR, Lecis D, Illuminato F, et al. Epigenetic modifications 
and non-coding RNA in diabetes-mellitus-induced coronary 
artery disease: Pathophysiological link and new therapeutic 
frontiers. Int J Mol Sci. 2022;23:4589. DOI: 10.3390/
ijms23094589

	67.	 Greißel A, Culmes M, Burgkart R, et al. Histone acetylation 
and methylation significantly change with severity of 
atherosclerosis in human carotid plaques. Cardiovasc Pathol. 
2016;25:79–86. DOI: 10.1016/j.carpath.2015.11.001

	68.	 Al-Kafaji G, Al-Mahroos G, Abdulla Al-Muhtaresh H, et al. 
Circulating endothelium-enriched microRNA-126 as a 
potential biomarker for coronary artery disease in type 2 
diabetes mellitus patients. Biomarkers. 2017;22:268–78. DOI: 
10.1080/1354750X.2016.1204004

	69.	 Liu N, Bezprozvannaya S, Williams AH, et al. MicroRNA-133a 
regulates cardiomyocyte proliferation and suppresses 
smooth muscle gene expression in the heart. Genes Dev. 
2008;22:3242–54. DOI: 10.1101/gad.1738708

	70.	 Ikeda S, He A, Kong SW, et al. MicroRNA-1 negatively regulates 
expression of the hypertrophy-associated calmodulin and 
mef2a genes. Mol Cell Biol. 2009;29:2193–204. DOI: 10.1128/
MCB.01222-08

	71.	 Amr KS, Abdelmawgoud H, Ali ZY, et al. Potential 
value of circulating microRNA-126 and microRNA-210 
as biomarkers for type 2 diabetes with coronary 
artery disease. Br J Biomed Sci. 2018;75:82–7. DOI: 
10.1080/09674845.2017.1402404

	72.	 Al-Hayali MA, Sozer V, Durmus S, et al. Clinical value 
of circulating microribonucleic acids mir-1 and mir-21 
in evaluating the diagnosis of acute heart failure in 
asymptomatic type 2 diabetic patients. Biomolecules. 
2019;9:193. DOI: 10.3390/biom9050193

	73.	 Liu H, Yang N, Fei Z, et al. Analysis of plasma mir-208a and mir-
370 expression levels for early diagnosis of coronary artery 
disease. Biomed Rep. 2016;5:332–6. DOI: 10.3892/br.2016.726

	74.	 Li P, Teng F, Gao F, et al. Identification of circulating microRNAs 
as potential biomarkers for detecting acute ischemic stroke. 
Cell Mol Neurobiol. 2015;35:433–47. DOI: 10.1007/s10571-014-
0139-5

	75.	 Giordano M, Trotta MC, Ciarambino T, et al. Circulating miRNA-
195-5p and -451a in diabetic patients with transient and acute 
ischemic stroke in the emergency department. Int J Mol Sci. 
2020;21:7615. DOI: 10.3390/ijms21207615

	76.	 Ortega FJ, Mercader JM, Moreno-Navarrete JM, et al. Profiling 
of circulating microRNAs reveals common microRNAs linked 
to type 2 diabetes that change with insulin sensitization. 
Diabetes Care. 2014;37:1375–83. DOI: 10.2337/dc13-1847

	77.	 Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic 
retinopathy, diabetic macular edema and related vision loss. 
Eye Vis (Lond). 2015;2:17. DOI: 10.1186/s40662-015-0026-2

	78.	 Maghbooli Z, Hossein-nezhad A, Larijani B, et al. Global DNA 
methylation as a possible biomarker for diabetic retinopathy. 
Diabetes Metab Res Rev. 2015;31:183–9. DOI: 10.1002/
dmrr.2584

	79.	 Mohammad G, Radhakrishnan R, Kowluru RA. Epigenetic 
modifications compromise mitochondrial DNA quality control 
in the development of diabetic retinopathy. Invest Ophthalmol 
Vis Sci. 2019;60:3943–51. DOI: 10.1167/iovs.19-27602

	80.	 Tewari S, Santos JM, Kowluru RA. Damaged mitochondrial 
DNA replication system and the development of diabetic 
retinopathy. Antioxid Redox Signal. 2012;17:492–504. DOI: 
10.1089/ars.2011.4333

	81.	 Tewari S, Zhong Q, Santos JM, Kowluru RA. Mitochondria DNA 
replication and DNA methylation in the metabolic memory 
associated with continued progression of diabetic retinopathy. 
Invest Ophthalmol Vis Sci. 2012;53:4881–8. DOI: 10.1167/
iovs.12-9732

	82.	 Zhang X, Bao S, Lai D, et al. Intravitreal triamcinolone 
acetonide inhibits breakdown of the blood-retinal barrier 
through differential regulation of VEGF-A and its receptors 

https://epi.grants.cancer.gov/epigen/#:~:text=Epigenetics%20focuses%20on%20processes%20that,a%20cell%20or%20entire%20organism
https://epi.grants.cancer.gov/epigen/#:~:text=Epigenetics%20focuses%20on%20processes%20that,a%20cell%20or%20entire%20organism
https://epi.grants.cancer.gov/epigen/#:~:text=Epigenetics%20focuses%20on%20processes%20that,a%20cell%20or%20entire%20organism


53

Review Diabetes

touchREVIEWS in Endocrinology

in early diabetic rat retinas. Diabetes. 2008;57:1026–33. DOI: 
10.2337/db07-0982

	83.	 Zhang X, Lai D, Bao S, et al. Triamcinolone acetonide inhibits 
p38mapk activation and neuronal apoptosis in early 
diabetic retinopathy. Curr Mol Med. 2013;13:946–58. DOI: 
10.2174/1566524011313060007

	84.	 Zhong Q, Kowluru RA. Epigenetic modification of Sod2 in the 
development of diabetic retinopathy and in the metabolic 
memory: Role of histone methylation. Invest Ophthalmol Vis 
Sci. 2013;54:244–50. DOI: 10.1167/iovs.12-10854

	85.	 Zhong Q, Kowluru RA. Epigenetic changes in mitochondrial 
superoxide dismutase in the retina and the development of 
diabetic retinopathy. Diabetes. 2011;60:1304–13. DOI: 10.2337/
db10-0133

	86.	 Kowluru RA. Mitochondria damage in the pathogenesis 
of diabetic retinopathy and in the metabolic memory 
associated with its continued progression. Curr Med Chem. 
2013;20:3226–33. DOI: 10.2174/09298673113209990029

	87.	 McAuley AK, Dirani M, Wang JJ, et al. A genetic variant 
regulating mir-126 is associated with sight threatening 
diabetic retinopathy. Diab Vasc Dis Res. 2015;12:133–8. DOI: 
10.1177/1479164114560160

	88.	 Shen J, Yang X, Xie B, et al. MicroRNAs regulate ocular 
neovascularization. Mol Ther. 2008;16:1208–16. DOI: 10.1038/
mt.2008.104

	89.	 Roy D, Modi A, Khokhar M, et al. MicroRNA 21 emerging role 
in diabetic complications: A critical update. Curr Diabetes Rev. 
2021;17:122–35. DOI: 10.2174/1573399816666200503035035

	90.	 Yin C, Lin X, Sun Y, Ji X. Dysregulation of mir-210 is involved 
in the development of diabetic retinopathy and serves
a regulatory role in retinal vascular endothelial cell
proliferation. Eur J Med Res. 2020;25:20. DOI: 10.1186/s40001-
020-00416-3

	91.	 Reddy MA, Natarajan R. Epigenetics in diabetic kidney 
disease. J Am Soc Nephrol. 2011;22:2182–85. DOI: 10.1681/
ASN.2011060629

	92.	 Deng Y, Li N, Wu Y, et al. Global, regional, and national burden 
of diabetes-related chronic kidney disease from 1990 to 2019. 
Front Endocrinol (Lausanne). 2021;12:672350. DOI: 10.3389/
fendo.2021.672350

	93.	 Bechtel W, McGoohan S, Zeisberg EM, et al. Methylation 
determines fibroblast activation and fibrogenesis in the 
kidney. Nat Med. 2010;16:544–50. DOI: 10.1038/nm.2135

	94.	 Rashid F, Ramakrishnan A, Fields C, Irudayaraj J. Acute 
PFOA exposure promotes epigenomic alterations in mouse 
kidney tissues. Toxicol Rep. 2020;7:125–32. DOI: 10.1016/j.
toxrep.2019.12.010

	95.	 Chen G, Chen H, Ren S, et al. Aberrant DNA methylation of 
mTOR pathway genes promotes inflammatory activation 
of immune cells in diabetic kidney disease. Kidney Int. 
2019;96:409–20. DOI: 10.1016/j.kint.2019.02.020

	96.	 Kato M, Natarajan R. Epigenetics and epigenomics in diabetic 
kidney disease and metabolic memory. Nat Rev Nephrol. 
2019;15:327–45. DOI: 10.1038/s41581-019-0135-6

	97.	 Zheng W, Guo J, Liu ZS. Effects of metabolic memory on 
inflammation and fibrosis associated with diabetic kidney 
disease: An epigenetic perspective. Clin Epigenetics. 
2021;13:87. DOI: 10.1186/s13148-021-01079-5

	98.	 Hayashi K, Sasamura H, Nakamura M, et al. KLF4-dependent 
epigenetic remodeling modulates podocyte phenotypes and 
attenuates proteinuria. J Clin Invest. 2014;124:2523–37. DOI: 
10.1172/JCI69557

	99.	 Lin C-L, Hsu Y-C, Huang Y-T, et al. A KDM6A-KLF10 reinforcing 
feedback mechanism aggravates diabetic podocyte 
dysfunction. EMBO Mol Med. 2019;11:e9828. DOI: 10.15252/
emmm.201809828

	100.	 Sharma I, Dutta RK, Singh NK, Kanwar YS. High glucose-
induced hypomethylation promotes binding of sp-1 to myo-
inositol oxygenase: Implication in the pathobiology of diabetic 
tubulopathy. Am J Pathol. 2017;187:724–39. DOI: 10.1016/j.
ajpath.2016.12.011

	101.	 De Marinis Y, Cai M, Bompada P, et al. Epigenetic regulation 
of the thioredoxin-interacting protein (TXNIP) gene by 
hyperglycemia in kidney. Kidney Int. 2016;89:342–53. DOI: 
10.1016/j.kint.2015.12.018

	102.	 Shao B-Y, Zhang S-F, Li H-D, et al. Epigenetics and inflammation 
in diabetic nephropathy. Front Physiol. 2021;12:649587. DOI: 
10.3389/fphys.2021.649587

	103.	 Hasegawa K, Wakino S, Simic P, et al. Renal tubular 
sirt1 attenuates diabetic albuminuria by epigenetically 
suppressing claudin-1 overexpression in podocytes. Nat Med. 
2013;19:1496–504. DOI: 10.1038/nm.3363

	104.	 Hong Q, Zhang L, Das B, et al. Increased podocyte sirtuin-1 
function attenuates diabetic kidney injury. Kidney Int. 
2018;93:1330–43. DOI: 10.1016/j.kint.2017.12.008

	105.	 Sun Z, Ma Y, Chen F, et al. MiR-133b and mir-199b knockdown 
attenuate TGF-β1-induced epithelial to mesenchymal 
transition and renal fibrosis by targeting SIRT1 in diabetic 
nephropathy. Eur J Pharmacol. 2018;837:96–104. DOI: 
10.1016/j.ejphar.2018.08.022

	106.	 Xu H, Sun F, Li X, Sun L. Down-regulation of mir-23a inhibits 
high glucose-induced EMT and renal fibrogenesis by up-
regulation of snon. Hum Cell. 2018;31:22–32. DOI: 10.1007/
s13577-017-0180-z

	107.	 Zhao D, Jia J, Shao H. MiR-30e targets GLIPR-2 to modulate 
diabetic nephropathy: In vitro and in vivo experiments. J Mol 
Endocrinol. 2017;59:181–90. DOI: 10.1530/JME-17-0083

	108.	 Bhatt K, Lanting LL, Jia Y, et al. Anti-inflammatory role of 
microRNA-146a in the pathogenesis of diabetic nephropathy. 
J Am Soc Nephrol. 2016;27:2277–88. DOI: 10.1681/
ASN.2015010111

	109.	 Tang J, Yao D, Yan H, et al. The role of microRNAs in the 
pathogenesis of diabetic nephropathy. Int J Endocrinol. 
2019;2019:8719060. DOI: 10.1155/2019/8719060

	110.	 Delić D, Eisele C, Schmid R, et al. Urinary exosomal miRNA 
signature in type II diabetic nephropathy patients. PLoS One. 
2016;11:e0150154. DOI: 10.1371/journal.pone.0150154

	111.	 Xie Y, Jia Y, Cuihua X, et al. Urinary exosomal microRNA 
profiling in incipient type 2 diabetic kidney disease. J Diabetes 
Res. 2017;2017:6978984. DOI: 10.1155/2017/6978984

	112.	 Jia Y, Guan M, Zheng Z, et al. MiRNAs in urine extracellular 
vesicles as predictors of early-stage diabetic nephropathy. J 
Diabetes Res. 2016;2016:7932765. DOI: 10.1155/2016/7932765

	113.	 Zhang H-H, Han X, Wang M, et al. The association between 
genomic DNA methylation and diabetic peripheral neuropathy 
in patients with type 2 diabetes mellitus. J Diabetes Res. 
2019;2019:2494057. DOI: 10.1155/2019/2494057

	114.	 Guo K, Elzinga S, Eid S, et al. Genome-wide DNA methylation 
profiling of human diabetic peripheral neuropathy in subjects 
with type 2 diabetes mellitus. Epigenetics. 2019;14:766–79. 
DOI: 10.1080/15592294.2019.1615352

	115.	 Araki T, Milbrandt J. Ninjurin2, a novel homophilic adhesion 
molecule, is expressed in mature sensory and enteric neurons 
and promotes neurite outgrowth. J Neurosci. 2000;20:187–95. 
DOI: 10.1523/JNEUROSCI.20-01-00187.2000

	116.	 Li YB, Wu Q, Liu J, et al. miR-199a-3p is involved in the 
pathogenesisand progression of diabetic neuropathy through 
downregulation of SerpinE2. Mol Med Rep. 2017;16:2417–24. 
DOI: 10.3892/mmr.2017.6874

	117.	 Zhang Y, Song C, Liu J, et al. Inhibition of mir-25 aggravates 
diabetic peripheral neuropathy. Neuroreport. 2018;29:945–53. 
DOI: 10.1097/WNR.0000000000001058

	118.	 Feng Y, Chen L, Luo Q, et al. Involvement of microRNA-146a 
in diabetic peripheral neuropathy through the regulation 
of inflammation. Drug Des Devel Ther. 2018;12:171–7. DOI: 
10.2147/DDDT.S157109

	119.	 Wang L, Chopp M, Lu X, et al. MiR-146a mediates thymosin 
β4 induced neurovascular remodeling of diabetic 
peripheral neuropathy in type-II diabetic mice. Brain Res. 
2019;1707:198–207. DOI: 10.1016/j.brainres.2018.11.039

	120.	 Yang D, Yang Q, Wei X, et al. The role of mir-190a-5p 
contributes to diabetic neuropathic pain via targeting 
SLC17A6. J Pain Res. 2017;10:2395–403. DOI: 10.2147/JPR.
S133755

	121.	 Jankovic M, Novakovic I, Nikolic D, et al. Genetic and 
epigenomic modifiers of diabetic neuropathy. Int J Mol Sci. 
2021;22:4887. DOI: 10.3390/ijms22094887

	122.	 Ciccacci C, Latini A, Colantuono A, et al. Expression study 
of candidate miRNAs and evaluation of their potential 
use as biomarkers of diabetic neuropathy. Epigenomics. 
2020;12:575–85. DOI: 10.2217/epi-2019-0242

	123.	 Deng J, Liao Y, Liu J, et al. Research progress on epigenetics 
of diabetic cardiomyopathy in type 2 diabetes. Front Cell Dev 
Biol. 2021;9:777258. DOI: 10.3389/fcell.2021.777258

	124.	 Pepin ME, Wende AR. Epigenetics in the development of 
diabetic cardiomyopathy. Epigenomics. 2019;11:469–72. DOI: 
10.2217/epi-2019-0027

	125.	 Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: An update 
of mechanisms contributing to this clinical entity. Circ Res. 
2018;122:624–38. DOI: 10.1161/CIRCRESAHA.117.311586

	126.	 Kao Y-H, Chen Y-C, Cheng C-C, et al. Tumor necrosis 
factor-alpha decreases sarcoplasmic reticulum ca2+-
ATPase expressions via the promoter methylation in 
cardiomyocytes. Crit Care Med. 2010;38:217–22. DOI: 10.1097/
CCM.0b013e3181b4a854

	127.	 Feng B, Chen S, George B, et al. MiR133a regulates 
cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res 
Rev. 2010;26:40–9. DOI: 10.1002/dmrr.1054

	128.	 Wang K, Lin Y, Shen H, et al. LncRNA TUG1 exacerbates 
myocardial fibrosis in diabetic cardiomyopathy by modulating 
the microRNA-145a-5p/cfl2 axis. J Cardiovasc Pharmacol. 
2023;81:192–202. DOI: 10.1097/FJC.0000000000001391

	129.	 Tao L, Huang X, Xu M, et al. Value of circulating miRNA-21 in 
the diagnosis of subclinical diabetic cardiomyopathy. Mol Cell 
Endocrinol. 2020;518:110944. DOI: 10.1016/j.mce.2020.110944

	130.	 Wang C, Liu G, Yang H, et al. MALAT1-mediated recruitment 
of the histone methyltransferase EZH2 to the microRNA-22 
promoter leads to cardiomyocyte apoptosis in diabetic 
cardiomyopathy. Sci Total Environ. 2021;766:142191. DOI: 
10.1016/j.scitotenv.2020.142191

	131.	 Rawal S, Nagesh PT, Coffey S, et al. Early dysregulation of 
cardiac-specific microRNA-208a is linked to maladaptive 
cardiac remodelling in diabetic myocardium. Cardiovasc 
Diabetol. 2019;18:13. DOI: 10.1186/s12933-019-0814-4

	132.	 Yildirim SS, Akman D, Catalucci D, Turan B. Relationship 
between downregulation of miRNAs and increase of 
oxidative stress in the development of diabetic cardiac 
dysfunction: Junctin as a target protein of mir-1. Cell 

Biochem Biophys. 2013;67:1397–408. DOI: 10.1007/s12013-
013-9672-y

	133.	 Feng B, Chen S, Gordon AD, Chakrabarti S. MiR-146a 
mediates inflammatory changes and fibrosis in the heart in 
diabetes. J Mol Cell Cardiol. 2017;105:70–6. DOI: 10.1016/j.
yjmcc.2017.03.002

	134.	 Kambis TN, Shahshahan HR, Kar S, et al. Transgenic expression 
of mir-133a in the diabetic akita heart prevents cardiac 
remodeling and cardiomyopathy. Front Cardiovasc Med. 
2019;6:45. DOI: 10.3389/fcvm.2019.00045

	135.	 Ni T, Huang X, Pan S, Lu Z. Inhibition of the long non-coding 
RNA ZFAS1 attenuates ferroptosis by sponging mir-150-5p and 
activates CCND2 against diabetic cardiomyopathy. J Cell Mol 
Med. 2021;25:9995–10007. DOI: 10.1111/jcmm.16890

	136.	 Singh GB, Raut SK, Khanna S, et al. MicroRNA-200c modulates 
DUSP-1 expression in diabetes-induced cardiac hypertrophy. 
Mol Cell Biochem. 2017;424:1–11. DOI: 10.1007/s11010-016-
2838-3

	137.	 Liu W, Wang Y, Qiu Z, et al. CircHIPK3 regulates cardiac 
fibroblast proliferation, migration and phenotypic switching 
through the mir-152-3p/TGF-β2 axis under hypoxia. PeerJ. 
2020;8:e9796. DOI: 10.7717/peerj.9796

	138.	 Zhu C, Zhang H, Wei D, Sun Z. Silencing lncRNA GAS5 alleviates 
apoptosis and fibrosis in diabetic cardiomyopathy by targeting 
mir-26a/b-5p. Acta Diabetol. 2021;58:1491–501. DOI: 10.1007/
s00592-021-01745-3

	139.	 Li Z, Yi N, Chen R, et al. MiR-29b-3p protects cardiomyocytes 
against endotoxin-induced apoptosis and inflammatory 
response through targeting FOXO3A. Cell Signal. 
2020;74:109716. DOI: 10.1016/j.cellsig.2020.109716

	140.	 Xu D, Zhang X, Chen X, et al. Inhibition of mir-223 attenuates 
the NLRP3 inflammasome activation, fibrosis, and apoptosis 
in diabetic cardiomyopathy. Life Sci. 2020;256:117980. DOI: 
10.1016/j.lfs.2020.117980

	141.	 Sun C, Zhou J. Trichostatin A improves insulin stimulated 
glucose utilization and insulin signaling transduction through 
the repression of HDAC2. Biochem Pharmacol. 2008;76:120–7. 
DOI: 10.1016/j.bcp.2008.04.004

	142.	 Ghosh GC, Bhadra R, Ghosh RK, et al. RVX 208: A novel 
BET protein inhibitor, role as an inducer of apo A-I/HDL 
and beyond. Cardiovasc Ther. 2017;35. DOI: 10.1111/1755-
5922.12265

	143.	 Sharma N, Navik U, Tikoo K. Unveiling the presence of 
epigenetic mark by lactobacillus supplementation in high-fat 
diet-induced metabolic disorder in Sprague-Dawley rats. J Nutr 
Biochem. 2020;84:108442. DOI: 10.1016/j.jnutbio.2020.108442

	144.	 Bridgeman SC, Ellison GC, Melton PE, et al. Epigenetic effects 
of metformin: From molecular mechanisms to clinical 
implications. Diabetes Obes Metab. 2018;20:1553–62. DOI: 
10.1111/dom.13262

	145.	 García-Calzón S, Perfilyev A, Männistö V, et al. Diabetes 
medication associates with DNA methylation of metformin 
transporter genes in the human liver. Clin Epigenetics. 
2017;9:102. DOI: 10.1186/s13148-017-0400-0

	146.	 Singer MA, Finegold L, Rochon P, Racey TJ. The formation of 
multilamellar vesicles from saturated phosphatidylcholines 
and phosphatidylethanolamines: Morphology and quasi-
elastic light scattering measurements. Chem Phys Lipids. 
1990;54:131–46. DOI: 10.1016/0009-3084(90)90067-2

	147.	 Hao T, Zhang H, Li S, Tian H. Glucagon-like peptide 1 receptor 
agonist ameliorates the insulin resistance function of islet β
cells via the activation of PDX-1/JAK signaling transduction in 
C57/BL6 mice with high-fat diet-induced diabetes. Int J Mol 
Med. 2017;39:1029–36. DOI: 10.3892/ijmm.2017.2910

	148.	 Capuani B, Pacifici F, Della-Morte D, Lauro D. Glucagon like 
peptide 1 and microRNA in metabolic diseases: Focusing 
on GLP1 action on miRNAs. Front Endocrinol (Lausanne). 
2018;9:719. DOI: 10.3389/fendo.2018.00719

	149.	 Ochoa-Rosales C, Portilla-Fernandez E, Nano J, et al. 
Epigenetic link between statin therapy and type 2 diabetes. 
Diabetes Care. 2020;43:875–84. DOI: 10.2337/dc19-1828

	150.	 Chen H-Y, Zhong X, Huang XR, et al. MicroRNA-29b 
inhibits diabetic nephropathy in db/db mice. Mol Ther. 
2014;22:842–53. DOI: 10.1038/mt.2013.235

	151.	 Kurtz CL, Peck BCE, Fannin EE, et al. MicroRNA-29 fine-tunes 
the expression of key FOXA2-activated lipid metabolism 
genes and is dysregulated in animal models of insulin 
resistance and diabetes. Diabetes. 2014;63:3141–8. DOI: 
10.2337/db13-1015

	152.	 Kornfeld J-W, Baitzel C, Könner AC, et al. Obesity-induced 
overexpression of mir-802 impairs glucose metabolism 
through silencing of hnf1b. Nature. 2013;494:111–5. DOI: 
10.1038/nature11793

	153.	 Kölling M, Kaucsar T, Schauerte C, et al. Therapeutic mir-21 
silencing ameliorates diabetic kidney disease in mice. Mol 
Ther. 2017;25:165–80. DOI: 10.1016/j.ymthe.2016.08.001

	154.	 Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 
107 regulate insulin sensitivity. Nature. 2011;474:649–53. DOI: 
10.1038/nature10112

	155.	 Bouchie A. First microRNA mimic enters clinic. Nat Biotechnol. 
2013;31:577. DOI: 10.1038/nbt0713-577

	156.	 van Rooij E, Purcell AL, Levin AA. Developing microRNA 
therapeutics. Circ Res. 2012;110:496–507. DOI: 10.1161/
CIRCRESAHA.111.247916


	Epigenetics of the Pathogenesis and Complications of Type 2 Diabetes Mellitus
	﻿Article highlights﻿﻿﻿﻿﻿﻿﻿
	Basics of epigenetic mechanisms
	Epigenetics and type 2 diabetes mellitus
	Epigenetics and risk of ﻿type 2 diabetes mellitus﻿
	The epigenetics and pathogenesis of ﻿type 2 diabetes mellitus﻿
	Epigenetics and complications of ﻿type 2 diabetes mellitus﻿
	Metabolic memory
	Endothelial dysfunction
	Macrovascular complications
	Microvascular complications
	Diabetic retinopathy
	Diabetic nephropathy
	Diabetic neuropathy

	Diabetic cardiomyopathy

	Epigenetics and therapeutics of ﻿type 2 diabetes mellitus﻿

	Conclusions




